PRÁCTICA 1: CARDINALIDAD

A. Propiedades básicas de los Conjuntos

Ejercicio 1. Demostrar las siguientes igualdades de conjuntos:

i)
$$B \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B \setminus A_i)$$
.

ii)
$$B \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (B \setminus A_i).$$

iii)
$$\bigcup_{i \in I} (A_i \cap B) = B \cap \Big(\bigcup_{i \in I} A_i\Big).$$

Ejercicio 2. Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos y sea $A=\bigcup_{n\in\mathbb{N}}A_n$. Hallar una familia de conjuntos $(B_n)_{n\in\mathbb{N}}$ que verifique simultáneamente:

- 1. $B_n \subseteq A_n$ para cada $n \in \mathbb{N}$;
- 2. $B_k \cap B_j = \emptyset$ si $k \neq j$;
- 3. $A = \bigcup_{n \in \mathbb{N}} B_n$.

Ejercicio 3. Sean $f:X\longrightarrow Y$ una función, $A\subseteq X$ y $B,B_1,B_2\subseteq Y$. Demostrar que:

- i) $A \subseteq f^{-1}(f(A))$.
- ii) $f(f^{-1}(B)) \subseteq B$.
- iii) $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.
- iv) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- v) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Generalizar iv) y v) al caso de uniones e intersecciones infinitas.

Ejercicio 4. Sea $f:X\longrightarrow Y$ una función. Probar que $f(f^{-1}(B))=B$ para cada $B\subseteq Y$ si y sólo si f es suryectiva.

B. Cardinalidad

Convención: En este curso diremos que un conjunto es numerable o contable si es equinumerable a un subconjunto de \mathbb{N} . Un conjunto es finito si es equinumerable al conjunto $\{i \in \mathbb{N} : i \leq n\}$ para algún $n \in \mathbb{N}_0$. Observar que el conjunto vacío es finito. Un conjunto es infinito si no es finito.

Ejercicio 5. (Esta es el lema clave en la primer demostración de Cantor sobre la existencia de números transcendentes.) Dada una sucesión $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ y un intervalo no vacío (a,b), sin apelar a nociones de cardinalidad ni al argumento diagonal de Cantor (ambas posteriores a este lema), demostrar que existe $c \in (a,b) \setminus \{x_n : n \in \mathbb{N}\}$.

Ejercicio 6. Sea A un conjunto no vacío. Probar que son equivalentes:

- 1. A es infinito.
- 2. para todo $x \in A$, existe una función $f_x : A \to A \setminus \{x\}$ biyectiva.
- 3. para todo $\{x_1,\ldots,x_n\}\subset A$, existe una función $f_{\{x_1,\ldots,x_n\}}:A\to A\setminus\{x_1,\ldots,x_n\}$ biyectiva.

Observar que el conjunto vacío verifica 2. y 3. pero no verifica 1.

Ejercicio 7. Dar una biyección entre \mathbb{N} y los siguientes conjuntos:

$$\mathbb{Z}_{\leq -1}$$
 ; $\mathbb{Z}_{\geq -3}$; $3.\mathbb{N}$; \mathbb{Z} ; $\mathbb{Z} \times \mathbb{N}$; \mathbb{N}^m $(m \in \mathbb{N})$.

Ejercicio 8. Sea \mathcal{A} un conjunto finito no vacío y $\mathcal{S} = \bigcup_{m \in \mathbb{N}} \mathcal{A}^m$. Probar que $S =_c \mathbb{N}$.

Deducir que, cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos. ¿Cuántos subconjuntos de \mathbb{N}^2 pueden ser definidos en un lenguaje fijo? ¿Cuántos hay en total?

Ejercicio 9. Sean A y B conjuntos, A infinito y B numerable. Probar que:

- i) Existe una biyección entre $A \cup B$ y A.
- ii) Si A no es numerable y $B \subseteq A$, entonces existe una biyección entre $A \setminus B$ y A. ¿Es numerable el conjunto $\mathbb{R} \setminus \mathbb{Q}$?

Ejercicio 10. Dar una biyección entre el conjunto ternario de Cantor $\mathcal{C} \subset \mathbb{R}$ y el espacio de Cantor $2^{\mathbb{N}}$.

Ejercicio 11. Dar una biyección entre:

- i) (0,1) y [0,1].
- ii) [0,1) y [0,1].

- iii) (a, b) y \mathbb{R} , donde a < b.
- iv) [a, b] y \mathbb{R} .

Ejercicio 12. Sea $X \subseteq \mathbb{R}_{>0}$ un conjunto de números reales positivos. Supongamos que existe una constante positiva C tal que para cualquier subconjunto finito $\{x_1, \ldots, x_n\} \subset X$ vale $\sum_{i=1}^n x_i \leq C$. Probar que X es numerable.

Ejercicio 13. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función monótona. Probar que:

$$\{x \in \mathbb{R} : f \text{ no es continua en } x\} \leq_c \mathbb{N}.$$

Ejercicio 14. Probar que si A es un conjunto numerable, el conjunto de las partes finitas de A (es decir, el subconjunto de $\mathcal{P}(A)$ formado por los subconjuntos finitos de A) es numerable.

Ejercicio 15. Hallar el cardinal de los siguientes conjuntos de sucesiones:

- i) $\{(a_n): a_n \in \mathbb{N} \text{ para todo } n \in \mathbb{N}\}.$
- ii) $\{(a_n) \subset \mathbb{N} : a_n \leq a_{n+1} \text{ para todo } n \in \mathbb{N}\}.$
- iii) $\{(a_n) \subset \mathbb{N} : a_n \geq a_{n+1} \text{ para todo } n \in \mathbb{N}\}.$
- iv) $\{(q_n) \subset \mathbb{Q} : \lim_{n \to \infty} q_n = 0\}.$
- v) $\{(q_n) \subset \mathbb{Q} : (q_n) \text{ es periódica}\}.$
- vi) $\{(a_n) \subset \mathbb{N} : 1 \le a_n \le m \text{ para todo } n \in \mathbb{N}\}$ $(m \in \mathbb{N}).$

Ejercicio 16. Probar que la unión numerable de conjuntos de cardinal c tiene cardinal c.

Ejercicio 17. Mostrar que \mathbb{R} es unión disjunta de c conjuntos de cardinal c.

Ejercicio 18.

- i) Usar el método de Liouville para construir un número trascendente.
- ii) Intentar construir numerables números trascendentes que sean Q-linealmente independientes.

Ejercicio 19.

i) Dados $\alpha \in \mathbb{R}$ y $N \in \mathbb{N}$ demostrar que existe $\frac{p}{q} \in \mathbb{Q}$ tal que

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{qN}, \text{ con } 1 \le q \le N.$$

3

ii) Dado $\alpha \in \mathbb{R} \setminus \mathbb{Q},$ demostrar que existen infinitos $\frac{p}{q} \in \mathbb{Q}$ tales que

$$\left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}.$$

iii) Sea $d \in \mathbb{N}$ tal que d no cuadrado perfecto. Entonces existe c>0 tal que para todo $\frac{p}{q} \in \mathbb{Q}$,

$$\left| \sqrt{d} - \frac{p}{q} \right| \ge \frac{c}{q^2}.$$

Ejercicio 20. Considerar los siguientes conjuntos de funciones:

$$\begin{array}{lll} \mathcal{F}(\mathbb{R}) & = & \{f \, | \, f : \mathbb{R} \longrightarrow \mathbb{R}\}; \\ \mathcal{C}(\mathbb{R}) & = & \{f \in \mathcal{F}(\mathbb{R}) \, | \, f \text{ es continua}\}; \end{array} \qquad \begin{array}{lll} \mathcal{F}(\mathbb{Q}) & = & \{f \, | \, f : \mathbb{Q} \longrightarrow \mathbb{R}\}; \\ \mathcal{C}(\mathbb{Q}) & = & \{f \in \mathcal{F}(\mathbb{Q}) \, | \, f \text{ es continua}\}. \end{array}$$

- i) Probar que $\sharp(\mathcal{F}(\mathbb{R})) > c$.
- ii) Calcular $\sharp(\mathcal{F}(\mathbb{Q}))$.
- iii) Calcular $\sharp(\mathcal{C}(\mathbb{Q}))$.
- iv) Probar que la función $\phi: \mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{Q})$ dada por $\phi(f) = f|_{\mathbb{Q}}$ es inyectiva. ¿Qué significa esto?
- v) Calcular $\sharp(\mathcal{C}(\mathbb{R}))$.

Ejercicio 21.

- i) Probar que $\{f: \mathbb{N} \to \mathbb{R}\} =_c \mathbb{R}$.
- ii) Sean A, B y C conjuntos. Probar que:

$$\{f: A \times B \to C\} =_c \{g: A \to D\}, \text{ donde } D = \{h: B \to C\}.$$

Ejercicio 22. Probar que $n^{\aleph_0} = \aleph_0^{\aleph_0} = c^{\aleph_0} = c$ cualquiera sea $n \in \mathbb{N}_{\geq 2}$.

Ejercicio 23. Sean a, b, c cardinales. Probar que:

- i) $a \cdot (b+c) = a \cdot b + a \cdot c$.
- ii) $a^{b+c} = a^b \cdot a^c$.
- iii) $(a^b)^c = a^{bc}$.
- iv) $(ab)^c = a^c \cdot b^c$.
- v) Si $b \le c$, entonces $a^b \le a^c$ y $b^a \le c^a$.