Análisis Matemático I (Lic. en Cs. Biológicas)

Segundo Cuatrimestre de 2018 Repaso sobre algunos conocimientos previos

Las relaciones siguientes se suponen conocidas por los alumnos:

1.
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
, y por lo tanto en general $(a + b)^2 \neq a^2 + b^2$.

2. La fracción
$$\frac{a}{b}$$
 está definida si y sólo si $b \neq 0$.

3. Si
$$a > b$$
 y $c > 0$ entonces vale que $ac > bc$ y $\frac{a}{c} > \frac{b}{c}$.

4. Si
$$a > b$$
 y $c < 0$ entonces vale que $ac < bc$ y $\frac{a}{c} < \frac{b}{c}$.

5. Si
$$a > b$$
, entonces vale que $a + c > b + c$, sin ninguna restricción sobre c .

$$6. \ \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}.$$

7. En general
$$\frac{a}{b} + \frac{a}{c} \neq \frac{a}{b+c}$$
.

8.
$$(ab)^n = a^n b^n y \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
.

9.
$$a^n a^m = a^{n+m} y \frac{a^n}{a^m} = a^{n-m}$$
.

10.
$$a^{-n} = \frac{1}{a^n}$$
.

11. Si
$$a \neq 0$$
 entonces $a^0 = 1$.

12.
$$(a^n)^m = a^{nm}$$
.

13.
$$\sqrt[n]{a}$$
 está definida para todo $a \in \mathbb{R}$ si n es *impar* y para los $a \ge 0$ si n es *par*.

14.
$$\sqrt{a^2} = |a| y (\sqrt{a})^2 = a$$
.

15.
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} y \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
.

16. En general
$$\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}$$
.

17.
$$\sin(x \pm y) = \sin(x)\cos(y) \pm \sin(y)\cos(x).$$

18.
$$cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y)$$
.