Práctica 1: Preliminares

1. Resolver las siguientes inecuaciones:

a)
$$|x+3| < 1$$

a)
$$|x+3| < 1$$
 b) $|3x-1| < |x-1|$ c) $|x-3| \ge 1$

c)
$$|x - 3| \ge 1$$

$$d) |x| > |x+3|$$

d)
$$|x| > |x+3|$$
 e) $\left| \frac{x-2}{3x+1} \right| \le 1$

2. Representar los siguientes conjuntos en la recta real.

(a)
$$\{x : |x-1| < 1, x \notin \mathbb{Z}\}$$

(b)
$$\{x: |x-3| < |2-x|\}$$

(c)
$$\{x: 0 < x^2 \le x^3\}$$

(d)
$$A = \{x \in \mathbb{R} : |x+3| + |x-9| > 2\}$$

(e)
$$B = \{x \in \mathbb{R} : ||x+2| - |x-1|| < 1\}$$

(f)
$$C = \{x \in \mathbb{R} : |x^3 - 1| + |2 - x^3| = 1\}$$

3. Sea $a \ge 0$. Determinar para qué valores de b se verifican cada una de las siguientes condiciones:

a)
$$|a+b| = |a| + |b|$$
 b) $|a+b| < |a| + |b|$

b)
$$|a+b| < |a| + |b|$$

c)
$$|a - b| = |a| + |b|$$
 d) $|a - b| < |a| + |b|$

$$d) |a-b| < |a| + |b|$$

e)
$$||a| - |b|| = |a - b|$$
 f) $||a| - |b|| < |a - b|$

$$f) ||a| - |b|| < |a - b|$$

4. Sean a y b números reales. Decidir para qué valores de a y de b son válidas cada una de las siguientes afirmaciones

1

a)
$$a < a^2$$

$$b) \ a < b \Rightarrow a^2 < b^2$$

$$c) \ a > 0 \Rightarrow ab \ge b.$$

c)
$$a > 0 \Rightarrow ab \ge b$$
. d) $a + b \ge \max\{a, b\}$

5. Sean $0 \le x \le y$. Probar que $x \le \sqrt{xy} \le \frac{x+y}{2} \le y$.

- (a) Mostrar que los siguientes conjuntos no están acotados superiormente:
 - i. $\mathbb{R}_{>0}$;
 - ii. $\{n \in \mathbb{N} : \exists m \in \mathbb{N} \text{ con } n = m^2\}.$
 - (b) Mostrar que los siguientes conjuntos no están acotados inferiormente:

 - ii. $\{x^{-1}: x < 0\};$
 - iii. Im(f) donde $f(x) = -x^2 + 2x + 1$.
- 7. Determinar si los siguientes conjuntos poseen supremo, ínfimo, máximo y mínimo. En caso de poseerlos, calcularlos:
 - a) $A = \{\frac{1}{n} : n \in \mathbb{N} \text{ y } 20 < n \le 35\}$ b) $A = \{\frac{(-1)^n}{n} : n \in \mathbb{N}\}$

c) $A = \{\frac{1}{n^2} : n \in \mathbb{N}\}$

- d) $A = \{ \frac{2n}{7n-3} : n \in \mathbb{N} \}$
- (a) Considerar el conjunto $A = \{a \in \mathbb{Q} : a^2 < 2\} \subset \mathbb{R}$. Calcule su supremo y concluya que A no tiene máximo.
 - (b) Dado el conjunto $B = \{a \in \mathbb{Q}_{>0}: a^2 > 2\} \subset \mathbb{R}$, calcule su ínfimo y concluya que B no tiene mínimo.
- 9. Calcular
- a) $\sup \{ \frac{n^2}{2^n} : n \in \mathbb{N} \}$ b) $\sup \{ \frac{\sqrt{n+1}}{10+n} : n \in \mathbb{N} \}$
- c) $\inf \{ \frac{n-3}{2^n} : n \in \mathbb{N} \}$ d) $\inf \{ n^2 9n 10 : n \in \mathbb{N} \}$
- 10. Decidir si las siguientes afirmaciones son verdaderas o falsas y justificar la respuesta con una demostración o un contraejemplo respectivamente.
 - (a) Si $\lim a_n = 2$ entonces $a_n > 0$ para todo $n \in \mathbb{N}$.
 - (b) Si $\lim_{n\to\infty} a_n = 2$ entonces existe $n_0 \in \mathbb{N}$ tal que $a_n > 0$ para todo $n \ge n_0$.
 - (c) Si $a_n < 2$ para todo $n \in \mathbb{N}$ y converge, entonces $\lim_{n \to \infty} a_n < 2$.
 - (d) Si $a_n < 2 \frac{1}{n}$ para todo $n \in \mathbb{N}$ y converge, entonces $\lim_{n \to \infty} a_n < 2$.
- 11. Calcular $\ell = \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{n+1}{n}$ y determinar, para cada $\varepsilon > 0$ de la siguiente tabla, un valor $n_0 = n_0(\varepsilon)$ tal que $\left| \frac{n+1}{n} - \ell \right| < \varepsilon$ si $n > n_0$.

ε	0, 1	0,027	0,00001	10^{-6}
n_0				

12. Dadas las sucesiones

$$a_n = \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}}$$
$$b_n = \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2+1}} + \dots + \frac{1}{\sqrt{n^2+n}}$$

Probar que:

- (a) $\lim_{n\to\infty} a_n = +\infty$
- (b) $\lim_{n \to \infty} b_n = 1$.

Sugerencia: Notar que a_n y b_n constan de n+1 términos. Usar el principio de comparación.

- 13. Sea $a_n = \frac{4n-10}{n+1}$.
 - (a) Encontrar $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se cumpla que $3 < a_n < 5$.
 - (b) Encontrar, si existen, $\max\{a_n : n \in \mathbb{N}\}\ y \min\{a_n : n \in \mathbb{N}\}.$
- 14. Sean $a_0, b_0 \in \mathbb{R}$ tales que $a_0 > b_0 > 0$. Se consideran las sucesiones $\{a_n\}_{n \in \mathbb{N}}$ y $\{b_n\}_{n \in \mathbb{N}}$ definidas recurrentemente por:

$$a_{n+1} = \frac{a_n + b_n}{2}, \quad b_{n+1} = \sqrt{a_n b_n}.$$

Demostrar las siguientes afirmaciones:

- (a) $a_n \ge b_n$ para todo natural n.
- (b) $\{a_n\}_n$ es decreciente y $\{b_n\}_{n\in\mathbb{N}}$ es creciente.
- (c) $\{a_n\}_n$ y $\{b_n\}_{n\in\mathbb{N}}$ son successores convergentes y $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.
- 15. Sea a_0 un número positivo. Se define la siguiente sucesión dada por recurrencia:

$$a_{n+1} := sen(a_n).$$

Probar que $\{a_n\}_n$ es una sucesión convergente y calcular su límite.

- 16. (a) Probar que $\sum_{j=0}^{n} q^j = \frac{1-q^{n+1}}{1-q}$
 - (b) Calcular $\sum_{j=0}^{\infty} \frac{7}{2^j}$ y $\sum_{j=2}^{\infty} \frac{3}{4^j}$.
- 17. (a) Probar que $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$. Sugerencia: Sumar el primer término con el último, el segundo con el penúltimo, etc.
 - (b) Sea $\{k_n\}_n$ una sucesión estrictamente creciente de números naturales. Sea

$$a_n := \frac{k_1 + \dots + k_n}{k_n^2},$$

probar que para todo $\varepsilon > 0$ existe un n_0 tal que si $n \geq n_0$ se tiene que $a_n \leq 1/2 + \varepsilon$.

Métricas y topología en \mathbb{R}^n

- 18. Resolver las siguientes ecuaciones e inecuaciones en \mathbb{R}^2 . Representar las soluciones en el plano.
 - a) $\{(x,y) \in \mathbb{R}^2 : x y^2 < 2\}$
- b) $\{(x,y) \in \mathbb{R}^2 : |x-y| > 2\}$
- c) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
- d) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
- e) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 3\}$
- $f) \{(x,y) \in \mathbb{R}^2 : |x-2| + |y+1| > 1\}$
- $g) \ \{(x,y) \in \mathbb{R}^2 : \max\{|x|;|y|\} = 1\} \\ \qquad h) \ \{(x,y) \in \mathbb{R}^2 : \max\{|x|;|y|\} < 1\}$
- 19. Para cada $x \in \mathbb{R}^n$, se define $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$ y $||x||_{\infty} = \max\{|x_i| : i = 1, ..., n\}$. Mostrar que si $x \in \mathbb{R}^n$, se tiene que
 - (a) $|x_i| < ||x||_2$, si $i = 1, \ldots, n$;
 - (b) $||x||_2 < \sqrt{n} ||x||_{\infty}$;
 - (c) $||x||_{\infty} \leq ||x||_{2} \leq \sqrt{n} ||x||_{\infty}$. Describir geométricamente esta doble desigualdad.
- 20. Representar gráficamente los siguientes conjuntos A.
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : 2x^2 + (y 1)^2 < 3\}$
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : y^2 < 5x\} \cup \{(x, y) \in \mathbb{R}^2 : x = 1, |y| \le \sqrt{5}\}$
 - (c) $A = \{(x, y) \in \mathbb{R}^2 : x^2 \frac{y^2}{4} < 1\}$
 - (d) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z < 1 \land x^2 + y^2 + (z+1)^2 < 1\};$
 - (e) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1 \land x^2 + y^2 > 1/2\}.$
- 21. Determinar cuáles de los siguientes subconjuntos de \mathbb{R}^2 son abiertos, cerrados y/o acotados:
 - (a) $K_1 = B_1(0) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\};$
 - (b) $K_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\};$
 - (c) $K_3 = \{(x, y) \in \mathbb{R}^2 : x > 0 \land y > 0\};$
 - (d) $K_4 = \{(0, \frac{1}{n}) : n \in \mathbb{N}\};$
 - (e) $K_5 = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \land y = 0\}.$
- 22. Calcular ∂A , \bar{A} , $\bar{A} \setminus A$ y $A \setminus \partial A$ para los conjuntos A que aparecen en el ejercicio 21. Recuerde que
 - ∂A es el borde de A,
 - \bullet \bar{A} es la clausura de A v
 - $C \setminus D$ es el conjunto de puntos en C que no pertenecen a D.