ÁLGEBRA III

Práctica 5 – Segundo Cuatrimestre de 2018

Ejercicio 1. Probar que:

1. Todo grupo abeliano es resoluble.

3. D_n es resoluble.

2. Todo p-grupo es resoluble.

4. \mathbb{S}_n es resoluble si y solo si $n \leq 4$.

Ejercicio 2. Mostrar explicitamente que las siguientes extensiones son resolubles por radicales:

1.
$$\mathbb{Q}[\sqrt[3]{1+\sqrt{2}},i+\sqrt{3}]/\mathbb{Q}$$

2. E/\mathbb{Q} cuerpo de descomposición de $f=(X^4-2)(X^2-5)$

3. $N/\mathbb{C}(a,b)$ cuerpo de descomposición de $f=X^2+aX+b$

4. $N/\mathbb{C}(a,b,c)$ cuerpo de descomposición de $f=X^3+aX^2+bX+c$

5. $N/\mathbb{C}(a,b,c,d)$ cuerpo de descomposición de $f=X^4+aX^3+bX^2+cX+d$

Ejercicio 3. Probar que el 65537-ágono regular es construible con regla y compás.

* Ejercicio 4. Para hallar una Lúnula de Hipócrates de parámetros (m:n) que admita una cuadratura se debe resolver

$$\left(\frac{\operatorname{sen}(m\theta)}{\operatorname{sen}(n\theta)}\right)^2 = \frac{m}{n}.$$

1. Probar que se trata de una ecuación algebraica en $x = \cos(\theta)$.

2. Probar que es equivalente a resolver $(y^m - 1)^2 - \frac{m}{n}y^{m-n}(y^n - 1)^2 = 0$.

3. Probar que las lúnulas cuadrables de parámetros (m:n) son construibles con regla y compás cuando (m:n)=(2:1),(3:1),(3:2),(5:1) y (5:3).

Ejercicio 5. Decimos que una extensión E/\mathbb{Q} es construible si todos sus miembros los son.

1. Probar que si E/\mathbb{Q} está generada por números construibles, entonces es construible.

2. Probar que si una extensión es construible, entonces su clausura normal también lo es.

3. ¿Existe una extensión E/\mathbb{Q} de grado 4 que no sea construible?

Ejercicio 6. Sea $G \subseteq \mathbb{S}_n$ un subgrupo transitivo que contiene una transposición

1. si también contiene un (n-1)-ciclo entonces $G = \mathbb{S}_n$.

2. si n = p es un primo impar entonces $G = \mathbb{S}_p$.

Ejercicio 7. Sea $G \subseteq \mathbb{S}_{p+2}$ un subgrupo transitivo con p primo impar. Supongamos que G contiene una permutación de estructura cíclica 2, p (es decir, el producto de una transposición y un p-ciclo disjuntos). Probar que $G = \mathbb{S}_{n+2}$.

Ejercicio 8. Sea $f \in \mathbb{Q}[X]$ irreducible de grado primo ≥ 5 . Suponer que f tiene exactamente dos raices no reales. Probar que f no es resoluble por radicales sobre \mathbb{Q} .

Ejercicio 9. Probar los siguientes polinomios no son resolubles por radicales sobre Q.

(i)
$$X^5 - 14X + 7$$

(II)
$$X^5 - 7X^2 + 7$$

(II)
$$X^5 - 7X^2 + 7$$
 (III) $X^7 - 10X^5 + 15X + 5$

Ejercicio 10. Sea $m \in \mathbb{N}$ par y sean $a_1 < a_2 < \cdots < a_r$ enteros positivos pares con r > 1impar. Sea $f = (X^2 + m)(X - a_1) \cdots (X - a_r) - 2$. Probar que:

- 1. f es irreducible en $\mathbb{Q}[X]$.
- 2. Para m suficientemente grande, f tiene exactamente dos raíces no reales en \mathbb{C} .
- * 3. Probar que el ítem anterior sigue valiendo si se quita la hipótesis "m suficientemente grande".

Ejercicio 11. Probar que para cada primo $p \in \mathbb{N}$, existe una extensión normal E/\mathbb{Q} con grupo de Galois isomorfo a \mathbb{S}_n .

Ejercicio 12. Sea $f = X^4 - X - 1 \in \mathbb{Q}[X]$.

- 1. Probar que $\overline{f} \in \mathbb{F}_2[X]$ es irreducible. 4. Factorizar $\overline{f} \in \mathbb{F}_7[X]$.
- 2. Calcular su discriminante.
- 5. ¿Cuántas raíces tiene f en \mathbb{Q}_7 ?
- 3. Probar que sólo tiene dos raíces reales.
- 6. Hallar el grupo de Galois de $\operatorname{Desc}(f|\mathbb{Q})$.

Ejercicio 13. Sea $f = X^5 + 2X^3 + 2X + 10 \in \mathbb{Q}[X]$.

- 1. Probar que es irreducible.
- 4. ¿Cuántas raíces tiene f en \mathbb{Q}_5 ?
- 2. Probar que sólo tiene una raíz real.
- 3. Factorizar $\overline{f} \in \mathbb{F}_5[X]$.

5. Hallar el grupo de Galois de $\operatorname{Desc}(f|\mathbb{Q})$.

Ejercicio 14. Sea $f = X^5 + 20X + 16 \in \mathbb{Q}[X]$.

- 1. Probar que $\overline{f} \in \mathbb{F}_3[X]$ es irreducible. 4. Factorizar $\overline{f} \in \mathbb{F}_7[X]$.
- 2. Calcular su discriminante.
- 5. ¿Cuántas raíces tiene f en \mathbb{Q}_7 ?
- 3. Probar que sólo tiene una raíz real.
- 6. Hallar el grupo de Galois de Desc $(f|\mathbb{Q})$.

Ejercicio 15. Sea $f = X^5 - X - 1 \in \mathbb{Q}[X]$.

- 1. Probar que es irreducible.
- 4. Factorizar $\overline{f} \in \mathbb{F}_2[X]$.
- 2. Calcular su discriminante.
- 5. ¿Qué grado tiene $\operatorname{Desc}(f|\mathbb{Q}_2)/\mathbb{Q}_2$?
- 3. Probar que sólo tiene una raíz real.
- 6. Hallar el grupo de Galois de $\operatorname{Desc}(f|\mathbb{Q})$.

Ejercicio 16. Sea $K \subseteq \mathbb{C}$ un cuerpo. Sea $f \in K[X]$ irreducible de grado primo $p \geqslant 5$. Sean $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ las raices de f y sea $N = K[\alpha_1, \ldots, \alpha_n]$ el cuerpo de descomposición de f sobre K. Probar que f es resoluble por radicales sobre K si y solo si $N = K[\alpha_i, \alpha_j]$ para todos $1 \leqslant i < j \leqslant p$.

Ejercicio 17. Sea $f = X^6 - 2X^3 - 2$ y $E = Desc(f|\mathbb{Q})$.

- 1. Probar que $Gal(E/\mathbb{Q})$ es resoluble.
- * 2. Probar que no alcanzan dos raíces de f para generar E.

Reducción módulo p y teorema de Dedekind

Nota: En esta práctica trabajamos con polinomios con coeficientes enteros. Dado un polinomio separable $f \in \mathbb{Z}[X]$ de grado n, denotamos G_f al grupo de Galois de f sobre \mathbb{Q} , el cual identificamos con un subgrupo de \mathbb{S}_n . Para cada primo p, la reducción de f módulo p es la imagen de f por el morfismo canónico $\mathbb{Z}[X] \to \mathbb{F}_p[X]$, y la denotamos f_p .

Ejercicio 18. Sea $f \in \mathbb{Q}[X]$ un polinomio mónico de grado n, y sea c un número entero divisible por todos los denominadores en los coeficientes de f. Probar que el polinomio $g(x) = c^n f\left(\frac{x}{c}\right)$ es mónico, tiene coeficientes enteros, y $\operatorname{Desc}(g|\mathbb{Q}) = \operatorname{Desc}(f|\mathbb{Q})$.

Ejercicio 19. Sea p>2 un número primo y sea $f\in\mathbb{Z}[X]$ un polinomio mónico e irreducible de grado p+2. Supongamos que para un cierto primo p', el polinomio $f_{p'}$ se factoriza en $\mathbb{F}_{p'}[X]$ como producto de dos polinomios irreducibles cuyos grados son 2 y p. Probar que $G_f = \mathbb{S}_{p+2}$.

Ejercicio 20. Para cada uno de los siguientes polinomios f, probar que $G_f = \mathbb{S}_n$, con n = $\deg(f)$:

- (a) $X^5 + 4X^4 + 4X^3 + 5X^2 2X + 3$: (c) $X^5 + 25X^4 + 10X^3 + 10X^2 + 10X + 15$:
- (b) $X^6 12X^4 + 15X^3 6X^2 + 15X + 12$; (d) $X^9 + 3X^8 + 3X^7 9X^3 9$.

Ejercicio 21. Sea f el polinomio $X^5 - X^4 + 2X^2 - 2$. Factorizando f módulo 3 y módulo 7, probar que G_f contiene una trasposición y un 4-ciclo. ¿Es $G_f = \mathbb{S}_5$?

Ejercicio 22. Decidir si el polinomio $X^7 + 12X^5 - 2X^2 - 2$ es resoluble por radicales. Sugerencia: mirar módulo 11.

Ejercicio 23. Sea $G \subseteq \mathbb{S}_n$ transitivo que contiene un p-ciclo para cierto primo $p > \frac{n}{2}$. Probar que

- a. si contiene una transposición, entonces $G = \mathbb{S}_n$.
- * b. si contiene un 3-ciclo entonces $\mathbb{A}_n \subseteq G$.

Ejercicio 24. Factorizar $f = X^7 - X - 1$ módulo 2,3 y 5 y concluir que $G_f \simeq \mathbb{S}_7$.

Ejercicio 25. Factorizar $f = X^7 - 7X + 10$ módulo 2 y 3. Probar que que $G_f \not\simeq \mathbb{S}_7$.

Ejercicio 26. Sean E/F y L/F subextensiones finitas de K/F con E/F de Galois.

- 1. Probar que $[EL:E] = [L:E \cap L]$.
- 2. Sea M/L subextensión de EL/L. Probar que $M=(E\cap M)L$.

Ejercicio 27. Sea E/F una extensión tal que $E=F[\alpha]$ donde $\alpha^n \in F$ para cierto $n \in \mathbb{N}$. Supongamos además que F contiene alguna raíz n-ésima primitiva de la unidad. Si m=[E:F], probar que $\alpha^m \in F$.

Ejercicio 28. Sea $K[\alpha]/K$ separable y finita, y L/K su clausura normal. Sea p un primo que divide al orden de Gal(L/K). Probar que existe una subextensión $F \subseteq L$ tal que $L = F[\alpha]$ y [L:F] = p.

Ejercicio 29. Sean $F \subseteq K \subseteq \mathbb{R}$ cuerpos con $K = F[\sqrt[n]{a}]$ para cierto $a \in F$. Probar que si L/F es Galois y $L \subseteq K$ entonces $[L:F] \le 2$.

* Ejercicio 30. Sea $f \in \mathbb{Q}[X]$ tal que $\mathrm{Desc}(f|\mathbb{Q}) \subseteq \mathbb{R}$ y alguna de sus raíces se puede expresar con radicales reales. Es decir, dicha raíz α pertenece al último cuerpo de una cadena

$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_m$$

de subcuerpos de \mathbb{R} , donde $K_{i+1} = K_i[\sqrt[n_i]{a_i}]$ para ciertos $a_i \in K_i$ y n_i enteros, $i = 1, \ldots, m-1$. Probar que todas sus raíces son construibles (con regla y compás). Sugerencia: usar los dos ejercicios anteriores.

* Ejercicio 31. Sea $p \neq 2$ primo y

$$E = \mathbb{Q}\left[\alpha : \alpha^{2^n} = p \text{ para cierto } n \geq 1\right]$$

(es decir, el cuerpo de descomposición de todos los polinomios de la forma $X^{2^n}-p$). Probar que $\operatorname{Gal}(E/\mathbb{Q})\simeq \mathbb{Z}_2\rtimes \mathbb{Z}_2^{\times}$.