Álgebra II Práctica 4-Anillos, ideales y morfismos de anillos

Todos los anillos aquí son unitarios.

- 1. Probar que los siguientes conjuntos, con las operaciones definidas tienen estructura de anillo:
 - i) $(M_n(A), +, \cdot)$, matrices de $n \times n$ con A anillo conmutativo.
 - ii) $\{f: A \longrightarrow A \text{ función}\}\ \text{con } A \text{ anillo}; \ (f+g)(a) := f(a)+g(a); \ (f\cdot g)(a) := f(a)\cdot g(a).$
 - iii) $A_1 \times \ldots \times A_n$; A_1, \ldots, A_n anillos, suma y producto coordenada a coordenada.
 - iv) $\{\mathcal{P}(X), \triangle, \cap\}$ con X conjunto.
 - v) $\mathbb{Z}[G] = \{ \sum_{g \in G} a_g g : a_g \in \mathbb{Z}, a_g \neq 0 \text{ para finitos } g \} \text{ con}$

$$\sum a_g g + \sum b_g g = \sum (a_g + b_g) g \quad ; \quad (\sum a_g g) \cdot (\sum a_h h) = \sum a_g b_h g \cdot h.$$

vi) $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}\$ con $d \in \mathbb{Z}, d$ libre de cuadrados.

Decidir cuáles son conmutativos, cuáles son dominios íntegros, anillos íntegros, anillos de división, cuerpos.

- 2. Dar ejemplos de
 - i) un anillo de división que no sea cuerpo.
 - ii) un anillo que no sea íntegro.
 - iii) un anillo íntegro que no sea de división.
- 3. Sea n compuesto y $\mathbb{Z}/n\mathbb{Z}$ con la suma usual. ¿Existe algún producto · que haga de $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ un cuerpo?
- 4. Consideramos el anillo $A = \mathcal{C}[0,1]$ de funciones reales continuas definidas en [0,1].
 - i) λ Hay divisores de cero en A?
 - ii) Determinar $\mathcal{U}(A)$?
- **5**. Sea A un anillo.
 - i) Probar que $\mathcal{U}(A)$ es un grupo multiplicativo.
 - ii) Caracterizar $\mathcal{U}(\mathbb{Z}/n\mathbb{Z})$.
 - iii) ; Cuál es el orden de $\mathcal{U}(\mathbb{Z}/n\mathbb{Z})$?
 - iv) $\xi \operatorname{Es} \mathcal{U}(\mathbb{Z}/5\mathbb{Z}) \simeq \mathcal{U}(\mathbb{Z}/8\mathbb{Z})$?
- **6**. Consideremos el anillo $\mathbb{Z}[\sqrt{3}]$.
 - i) Probar que en $\mathbb{Z}[\sqrt{3}]$ la escritura es única. Es decir que si $a+b\sqrt{3}=c+d\sqrt{3}$, entonces a=c y b=d.
 - ii) Sea $N: \mathbb{Z}[\sqrt{3}] \longrightarrow \mathbb{Z}$ la función norma definida por $N(a+b\sqrt{3})=a^2-3b^2$. Probar que es multiplicativa.

- iii) Probar que $2 + \sqrt{3}$ es una unidad.
- iv) Probar que $z \in \mathbb{Z}[\sqrt{3}]$ es una unidad si y sólo si N(z) = 1 ó N(z) = -1.
- v) Hallar otras unidades de $\mathbb{Z}[\sqrt{3}]$.
- 7. Caracterizar el grupo de unidades de \mathbb{Z} , K cuerpo, $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-5}]$, D[X] con D dominio íntegro.
- 8. Sea D un dominio íntegro finito. Probar que D es un cuerpo.
- 9. Sea A un anillo. Probar que A es un anillo de división si y sólo si los únicos ideales a izquierda de A son 0 y A.
- **10**. Sea A un anillo conmutativo y $f \neq 0$ en A[X]. Probar que si f es un divisor de cero en A[X] entonces existe $a \in A$ tal que $a \neq 0$ y af = 0.
- 11. Probar que si A es un dominio íntegro entonces A[X] es un dominio íntegro.
- 12. Sea K un cuerpo. Probar que los únicos ideales biláteros de $M_2(K)$ son 0 y $M_2(K)$. ¿Es $M_2(K)$ un anillo de división?
- 13. Probar que si $f: \mathbb{R} \to \mathbb{R}$ es un morfismo de cuerpos entonces $f = \mathrm{id}$.
- 14. Hallar todos los morfismos de cuerpos $f: \mathbb{C} \to \mathbb{C}$ que satisfacen $f(\mathbb{R}) \subseteq \mathbb{R}$.
- **15**. Sea A un anillo conmutativo. ξ Es el determinante $det: M_n(A) \longrightarrow A$ un morfismo de anillos ?Y ξ la traza?
- **16**. Calcular el grupo de automorfismos de anillos de \mathbb{Q} , \mathbb{Z} , $\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[^3\sqrt{2}]$, $\mathbb{Q}[w_n]$ con w_n raíz n-ésima primitiva de 1.
- 17. Mostrar los isomorfismos
 - i) $\mathbb{Q}[X]/\langle X^3 + X \rangle \simeq \mathbb{Q} \times \mathbb{Q}[i]$.
 - ii) $\mathbb{R}[X]/\langle X^4 1 \rangle \simeq \mathbb{R} \times \mathbb{R} \times \mathbb{C}$.
- 18. Sea A un anillo conmutativo y sea B un subanillo de A. Probar o dar contraejemplo:
 - i) $A \text{ cuerpo} \Rightarrow B \text{ cuerpo}$.
 - ii) A dominio íntegro \Rightarrow B dominio íntegro.
 - iii) B dominio íntegro \Rightarrow A dominio íntegro.
- **19**. Probar que $\mathbb{Z}[X]/\langle X^2+1\rangle \simeq \mathbb{Z}[i]$.
- **20**. Probar que para todo anillo A existe un subanillo B de A tal que $B \simeq \mathbb{Z}/n\mathbb{Z}$ para algún $n \in \mathbb{N}_0$.
- **21**. Probar que $\mathbb{Z}[i]/\langle 1+i\rangle \simeq \mathbb{Z}/2\mathbb{Z}$ y caracterizar el anillo cociente $\mathbb{Z}[i]/\langle 1+2i\rangle$.
- **22**. Determinar $\mathcal{U}(\mathbb{Z}[X]/\langle X^3 \rangle)$.
- **23**. Sea A anillo y $Z(A) := \{x \in A : xy = yx, \forall y \in A\}$ su centro. Probar que si $\forall x \in A, x^2 x \in Z(A)$ entonces A es commutativo.