1	2	3	4	5	Calificación

APELLIDO Y NOMBRE:

No. de libreta:

Topología - Recuperatorio del segundo parcial - 13/12/2017

El examen se aprueba resolviendo bien tres ejercicios.

1. Sea $\{F_1, \ldots, F_n\}$ un cubrimiento por cerrados de un espacio topológico X. Pruebe que, para todo espacio topológico Y, las restricciones $C(X,Y) \to C(F_i,Y)$ inducen un subespacio

$$\phi: C(X,Y) \to \prod_{i=1}^n C(F_i,Y), \quad \phi(f) = (f|_{F_1},\dots,f|_{F_n}).$$

- 2. Sean $T = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \land y \geq 0 \land x + y \leq 1\}$, $V = \{(0,0),(1,0),(0,1)\} \subset T$ y X = T/V. Es decir, X es el espacio que resulta de identificar en un punto a los tres vértices del triángulo T. Calcule $\pi_1(X)$.
- 3. Sea $T = S^1 \times D^2$ el toro sólido. Pruebe que T no se retrae a $\{1\} \times S^1$.
- 4. Sea $X \subseteq \mathbb{R}^m$ una unión de abiertos convexos X_1, \ldots, X_r tales que $X_i \cap X_j \cap X_k \neq \emptyset$ para todos i, j, k. Pruebe que X es simplemente conexo.
- 5. Sea $p: E \to B$ un revestimiento tal que la fibra $p^{-1}(b)$ es finita para todo $b \in B$. Pruebe que si B es compacto, entonces E también lo es.

Justifique todas sus respuestas.