El teorema de Borsuk-Ulam

Lema. Sea $f: S^1 \to S^1$ una función continua tal que f(-x) = -f(x) para todo $x \in S^1$. Sea $R: S^1 \to S^1$ definida por $R(z) = \frac{z}{f(1)}$. Entonces el morfismo

$$(R \circ f)_* : \pi_1(S^1, 1) \to \pi_1(S^1, 1)$$

es la multiplicación por un entero impar.

Demostración. Sea $p: \mathbb{R} \to S^1$, $p(t) = e^{2\pi i t}$, el revestimiento universal de S^1 . Tenemos un isomorfismo de grupos

$$\pi_1(S^1, 1) \to p^{-1}(1) = \mathbb{Z}, \quad [\beta] \mapsto \hat{\beta}(1),$$
 (1)

donde $\hat{\beta}$ es el levantado de β por p que empieza en 0. Sea $\alpha:I\to S^1$ definida por $\alpha(t)=e^{2\pi it}$. Notemos que (1) es el isomorfismo $\pi_1(S^1,1)\cong\mathbb{Z}$ que identifica a $[\alpha]$ con el 1. Queremos ver que $(R\circ f)_*[\alpha]=[R\circ f\circ \alpha]$ se identifica con un entero impar. Para alivianar la notación, llamemos $\gamma=R\circ f\circ \alpha$. Sea $\hat{\gamma}$ el levantado de γ por p que empieza en 0. Debemos mostrar que $\hat{\gamma}(1)$ es un entero impar. Para $0\le t\le \frac{1}{2}$ tenemos que

$$\alpha(t + \frac{1}{2}) = e^{2\pi i t + \pi i} = -e^{2\pi i t} = -\alpha(t).$$

Aplicando $R \circ f$ y usando que f(-x) = -f(x) y que R es lineal, concluimos que

$$\gamma(t + \frac{1}{2}) = -\gamma(t)$$

para todo $0 \le t \le \frac{1}{2}$. Luego

$$p(\hat{\gamma}(t+\tfrac{1}{2})) = -p(\hat{\gamma}(t)) = p(\hat{\gamma}(t)+\tfrac{1}{2})$$

para todo $0 \le t \le \frac{1}{2}$. Como dos números reales están en la misma fibra de p si y solo si difieren en un entero, para cada $t \in [0, \frac{1}{2}]$ existe un entero n_t tal que

$$\hat{\gamma}(t + \frac{1}{2}) = \hat{\gamma}(t) + \frac{1}{2} + n_t.$$
 (2)

De la continuidad de $\hat{\gamma}$ y la conexión de $[0,\frac{1}{2}]$, se deduce que n_t es un mismo entero n para todo t. Entonces

$$\hat{\gamma}(1) = \hat{\gamma}(\frac{1}{2}) + \frac{1}{2} + n \qquad \text{(por (2) con } t = \frac{1}{2})$$

$$= \hat{\gamma}(0) + \frac{1}{2} + n + \frac{1}{2} + n \qquad \text{(por (2) con } t = 0)$$

$$= 2n + 1, \qquad \text{(porque } \hat{\gamma}(0) = 0)$$

como queríamos probar.

Corolario. Sea $f: S^1 \to S^1$ una función continua tal que f(-x) = -f(x) para todo $x \in S^1$. Entonces el morfismo

$$f_*: \pi_1(S^1, 1) \to \pi_1(S^1, f(1))$$

no es el morfismo trivial.

Demostraci'on. Sea $R:S^1\to S^1$ definida por $R(z)=\frac{z}{f(1)}$; notemos que R es un homeomorfismo. Por el lema anterior, $(R\circ f)_*$ no es el morfismo trivial. Pero $(R\circ f)_*$ es igual a la composici\'on

$$\pi_1(S^1,1) \xrightarrow{f_*} \pi_1(S^1,f(1)) \xrightarrow{R_*} \pi_1(S^1,1),$$

en la que R_* es un isomorfismo —por ser R un homeo. Se sigue que f_* no es el morfismo trivial.

Teorema (Borsuk-Ulam). Sea $f: S^2 \to \mathbb{R}^2$ una función continua. Entonces existe $x \in S^2$ tal que f(x) = f(-x).

Proof. Supongamos que $f(x)\neq f(-x)$ para todo $x\in S^2.$ Sea $g:S^2\to S^1$ dada por:

$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$$

Notemos que g(-x)=-g(x). Sea $i:S^1\to S^2$ la inclusión definida por $i(x_1,x_2)=(x_1,x_2,0)$; notemos que i(-x)=-i(x). Sea $h:S^1\to S^1,\ h=g\circ i$. Como h(-x)=-h(x), sabemos que

$$h_*: \pi_1(S^1, 1) \to \pi_1(S^1, h(1))$$

no es el morfismo trivial, por el corolario anterior. Pero esto contradice el hecho de que h_* se factoriza por $\pi_1(S^2, i(1)) = 1$.