Geometría Proyectiva

SEGUNDO CUATRIMESTRE 2017

CURVAS PLANAS

(1) La lemniscata. Sea $\alpha: \mathbb{R} \to \mathbb{R}^2$ la función

$$\alpha(t) = \left(t\frac{1+t^2}{1+t^4}, t\frac{1-t^2}{1+t^4}\right).$$

- (a) La curva α es diferenciable, regular y simple.
- (b) Determine $\lim_{t\to-\infty} \alpha(t)$ y $\lim_{t\to+\infty} \alpha(t)$ y concluya que α no es un homeomorfismo entre \mathbb{R} y su traza.
- (2) Un disco circular de radio 1 rueda en el plano xy sin resbalar sobre el eje x. La figura descripta por un punto fijo sobre la circunferencia del disco se llama cicloide.
 - (a) Obtenga una parametrización del cicloide y determine sus puntos singulares.
 - (b) Calcule la longitud de arco del cicloide correspondiente a una rotación completa del disco.
- (3) Sea $\alpha:(0,\pi)\to\mathbb{R}^2$ dada por

$$\alpha(\theta) = (\sin(\theta), \cos(\theta) + \log(\tan(\frac{\theta}{2}))).$$

La traza de α es llamada tractriz.

- (a) La curva α es diferenciable pero no regular.
- (b) La longitud del segmento de la tangente de la tractriz entre el punto de tangencia y la intersección con el eje y es siempre 1.
- (4) Sea $\alpha: (-1, +\infty) \to \mathbb{R}^2$ dada por

$$\alpha(t) = (\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}).$$

- (a) α es tangente al eje x en t=0.
- (b) Se tiene que $\lim_{t\to +\infty} \alpha(t) = (0,0)$ y $\lim_{t\to +\infty} \alpha'(t) = (0,0)$.
- (c) Cuando $t \to -1$ esta curva y su tangente se aproximan a la recta x + y + a = 0.

La figura que se obtiene completando la curva con su simétrica respecto de la recta y=x se llama folio de Descartes.

- (5) Sean a > 0 y b < 0, y consideremos la curva $\alpha(t) = (ae^{bt}\cos(t), ae^{bt}\sin(t))$. Esta curva se llama espiral logarítmica.
 - (a) Es $\lim_{t\to +\infty} \alpha(t)=(0,0)$, y cuando $t\to +\infty$ la curva sigue una trayectoria que envuelve al origen infinitas veces.
 - (b) Por otro lado, $\lim_{t\to +\infty} \alpha'(t) = (0,0)$ y $\lim_{t\to +\infty} \int_{t_0}^t |\alpha'(t)| \, dt$ es finito. Por lo tanto, α tiene longitud de arco finita en $[t_0, +\infty)$.
- (6) Sea α una curva que no pasa por el origen. Si $\alpha(t_0)$ es el punto de su traza más próximo al origen y $\alpha'(t_0) \neq 0$, entonces $\alpha(t_0)$ y $\alpha'(t_0)$ son vectores ortogonales.
- (7) Si todas las normales a una curva parametrizada por longitud de arco pasan por un punto fijo entonces la traza de la curva está contenida en un círculo.
- (8) Sea $\alpha(s) = (\alpha_1(s), \alpha_2(s))$ una curva parametrizada por longitud de arco. Sea $\mathbf{t} = \alpha'$ la tangente de α y sea \mathbf{n} , la normal de α , el único vector unitario tal que $\{\mathbf{t}, \mathbf{n}\}$ es una base ortonormal orientada de \mathbb{R}^2 . La curvatura de α es el único escalar κ tal que

$$\mathbf{t}' = \kappa \cdot \mathbf{n}$$
.

- (a) La curvatura de α es el área (con signo) del rectángulo definido por el par ordenado de vectores $\{\mathbf{t},\mathbf{t}'\}$. Encuentre una expresión explícita para κ en función de α_1 , α_2 y sus derivadas.
- (b) Los vectores \mathbf{t}' y \mathbf{n}' son ortogonales.
- (c) La función $|\kappa|$ es constante e igual a 1/r si y sólo si la curva α está contenida en una circunferencia de radio r.

Notemos que tomando módulos en $\mathbf{t}' = \kappa \cdot \mathbf{n}$, se deduce la expresión conocida

$$|\kappa| = |\mathbf{t}'| = |\alpha''|.$$

(9) De la expresión $\kappa_{\alpha} = \alpha'_1 \alpha''_2 - \alpha'_2 \alpha''_1$ para la curvatura κ_{α} de una curva α parametrizada por longitud de arco obtenida en el ejercicio anterior, deduzca —utilizando la regla de la cadena— la

siguiente expresión para la curvatura κ_c de una curva c regular no necesariamente parametrizada por longitud de arco:

$$\kappa_c = \frac{c_1' c_2'' - c_2' c_1''}{[(c_1')^2 + (c_2')^2]^{3/2}}.$$

(10) Sea $k:I\to\mathbb{R}$ una función diferenciable definida sobre un intervalo abierto $I\subseteq\mathbb{R}$. Fijemos $s_0\in I$ y definamos una nueva función $\theta:I\to\mathbb{R}$ poniendo $\theta(s)=\int_{s_0}^s k(s)\,\mathrm{d}s$ para cada $s\in I$. Entonces la curva $\alpha:I\to\mathbb{R}^2$ dada por

$$\alpha(s) = \left(\int_{s_0}^s \cos \theta(s) \, \mathrm{d}s, \int_{s_0}^s \sin \theta(s) \, \mathrm{d}s\right)$$

para cada $s \in I$, tiene curvatura k y que está determinada unívocamente a menos de un movimiento rígido del plano.

(11) Fijemos una curva, dada en coordenadas polares por la ecuación $\rho = \rho(\theta)$, con $\rho : [a, b] \to \mathbb{R}$ una función suficientemente diferenciable. Entonces la longitud de la curva es

$$\int_{a}^{b} \sqrt{\rho(\theta)^{2} + \rho'(\theta)^{2}} \, \mathrm{d}\theta$$

y su curvatura, como función de θ , es

$$k = \frac{2\rho'^2 - \rho\rho'' + \rho^2}{(\rho'^2 + \rho^2)^{\frac{3}{2}}}.$$

(12) Sea $\alpha:(a,b)\to\mathbb{R}^2$ una curva parametrizada por longitud de arco cuya curvatura no se anula. Si $s_0\in(a,b)$, se llama centro de curvatura de α en s_0 al punto

$$x(s_0) = \alpha(s_0) + \frac{1}{\kappa(s_0)} n(s_0)$$

y se llama círculo osculador a α en s_0 al círculo centrado en $x(s_0)$ cuyo radio es $\rho(s_0) = |\kappa(s_0)|^{-1}$. Muestre que la curva α y el círculo osculador a α en s_0 tienen contacto de segundo orden en $\alpha(s_0)$ y que, en particular, ambos tienen la misma tangente.

(13) Determine los centros de curvatura y los círculos osculadores de la elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(14) Sea $\alpha:(a,b)\to\mathbb{R}^2$ una curva paramétrica con curvatura nunca nula. Se define $\bar{\alpha}:(a,b)\to\mathbb{R}^2$ de modo que, para cada $t\in(a,b)$, $\bar{\alpha}(t)$ es el centro de curvatura de α en el punto $\alpha(t)$. Se dice que $\bar{\alpha}$ es la evoluta de α .

Demostrar:

- a) La dirección tangente a $\bar{\alpha}$ en $\bar{\alpha}(t)$ coincide con la dirección normal a α en $\alpha(t)$, para todo $t \in (a,b)$.
- b) La longitud del arco de $\bar{\alpha}$ entre t y t' (a < t < t' < b) es igual a la diferencia $\rho_{\alpha}(t') \rho_{\alpha}(t)$ entre los radios de curvatura de α en los puntos correspondientes.

Más detalles en Struik o http://en.wikipedia.org/wiki/Evolutes