PRÁCTICA 8: MEDIDAS COMPLEJAS Y EL TEOREMA DE RADON-NIKODYM

Ejercicio 1. Sea (Ω, \mathcal{M}) un espacio medible, y $\lambda : \mathcal{M} \to \mathbb{C}$ una medida compleja

1. Probar que si definimos la variación de λ por

$$|\lambda|(E) = \sup \sum_{n=1}^{\infty} |\lambda(E_n)|$$

donde el supremo se toma sobre todas las particiones

$$\Omega = \bigcup_{n=1}^{\infty} E_n \quad (E_n \in \mathcal{M})$$

de E en conjuntos medibles disjuntos, $|\lambda|$ es una medida no negativa y finita.

2. Probar que el conjunto

$$M(\Omega) = \{\lambda : \mathcal{M} \to \mathbb{C} : \lambda \text{ es una medida compleja } \}$$

es un espacio de Banch con la norma dada por la variación total de λ .

$$\|\lambda\| = |\lambda|(\Omega)$$

Ejercicio 2. Sea μ la medida de contar en \mathbb{R} y sea m la medida de Lebesgue. Probar que $m \ll \mu$ pero no existe f tal que

$$m(E) = \int_{E} f \, d\mu.$$

¿Por qué esto no contradice el Teorema de Radon-Nikodym?

Ejercicio 3.

(a) Sean λ y μ medidas no negativas sobre (Ω, \mathcal{M}) y $\lambda(\Omega) < \infty$. Probar:

$$\lambda \ll \mu \quad \Leftrightarrow \quad \forall \epsilon > 0, \ \exists \delta = \delta(\epsilon) > 0: \ \mu(E) < \delta \ \Rightarrow \ \lambda(E) < \epsilon.$$

(b) Demostrar que la hipótesis $\lambda(\Omega) < \infty$ es necesaria en (a). (Sug. Considerar μ la medida de Lebesgue en (0,1) y $\lambda(E) = \int_E \frac{dt}{t}$ para todo $E \subseteq (0,1)$ medible Lebesgue.)

Ejercicio 4. En \mathbb{R}^n consideramos una medida de Borel compleja λ absolutamente continua respecto a la medida de Lebesgue m. Probar que la derivada de Radon-Nikodym de λ con respectoa m se puede calcular como

$$\frac{d\lambda}{dm}(x) = \lim_{r \to 0} \frac{\lambda(B(x,r))}{m(B(x,r))}$$

para casi todo x con respecto a la medida de Lebesgue.

Ejercicio 5. Sea μ una medida con signo definida en la σ -álgebra de Borel de \mathbb{R} y sea $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \mu(-\infty, x]$. Probar:

- (a) Probar que f es de variación acotada y continua por la derecha. Sugerencia: en el caso en que μ es no negativa, f es creciente.
- (b) $\mu \ll m$ si y solo si f es absolutamente continua y en ese caso $\frac{d\mu}{dm} = f'.$
- (c) $\mu \perp m$ si y solo si f' = 0 en casi todo punto respecto de m.

Ejercicio 6. Sea $(\Omega, \mathcal{M}, \mu)$ un espacio de medida finita y F un subconjunto cerrado del plano complejo \mathbb{C} y $g \in L^1(\mu)$ tal que si $\mu(E) > 0$ entonces:

$$\frac{1}{\mu(E)} \int_{E} g(x) \ d\mu \in F$$

entonces $g(x) \in F$ para casi todo x respecto de μ .

Ejercicio 7. Supongamos que $(\Omega, \mathcal{M}, \mu)$ es un espacio de medida finita. Decimos que $A \in \mathcal{M}$ no vacío es un átomo para μ si para todo $E \in \mathcal{M}$ tal que $E \subset A$, $\mu(E) = \mu(A)$ o $\mu(E) = 0$. Si μ no tiene átomos, diremos que es no atómica. Probar que si μ es no atómica, para todo t con $0 < t < \mu(\Omega)$ existe $A \in \mathcal{M}$ con $\mu(A) = t$.

Sugerencia: sean $l = \sup\{\mu(B) : B \in \mathcal{M}, \mu(B) \leq t\}$ y $u = \inf\{\mu(B) : B \in \mathcal{M}, \mu(B) \geq t\}$ Probar que existen conjuntos medibles L y U tales que $\mu(L) = l$ y $\mu(U) = u$. Deducir que u = l.

Ejercicio 8. (descomposición polar de una medida compleja)

1. Si (Ω, \mathcal{M}) un espacio medible, y $\lambda : \mathcal{M} \to \mathbb{C}$ una medida compleja, ver que existe $h \in L^1(|\lambda|)$ tal que

$$\lambda(E) = \int_{E} |h| \ d|\lambda|$$

y tal que |h(x)| = 1 en casi todo punto respecto a $|\lambda|$. Además h es única (salvo igualdad en casi todo punto respecto a $|\lambda|$)

2. Definimos la integral respecto de λ por

$$\int_{\Omega} f \ d\lambda = \int_{\Omega} f \ h \ d|\lambda|$$

para $f \in L^1(|\lambda|)$. Vea que fijada $f : \Omega \to \mathbb{C}$ acotada, la integral define un funcional lineal acotado sobre el espacio de Banach $M(\Omega)$.

Ejercicio 9. (Descomposición de Hahn) Sea (Ω, \mathcal{M}) un espacio medible, y $\lambda : \mathcal{M} \to \mathbb{R}$ una medida con signo

- 1. Probar que existen medidas no negativas λ^+ y λ^- tales que $\lambda = \lambda^+ \lambda^-$ y $|\lambda| = \lambda^+ + \lambda^-$.
- 2. Probar que existe una descomposición $\Omega = P \cup N$ con las siguientes propiedades

- a) P y N son medibles $y P \cap N = \emptyset$.
- b) λ^+ está concentrada en P, que es un conjunto positivo para λ : para todo $E \subset P$ medible, $\lambda(E) \geq 0$.
- c) λ^- está concentrada en N, que es un conjunto positivo para λ : para todo $E \subset N$ medible, $\lambda(E) \leq 0$.

Ejercicio 10. Sean $(\Omega, \mathcal{M}, \mu)$ un espacio de medida σ -finito y $f : \Omega \to \mathbb{C}$ tal que $f \in L^1(\Omega, \mu)$. Definamos

$$\lambda_f(E) = \int_E f \ d\mu \quad E \in \mathcal{M}$$

- 1. Probar que la correspondencia $f \mapsto \lambda_f$ define un isomorfismo isométrico (es decir que respeta la norma) entre $L^1(\mu)$ y el subespacio de $M(\Omega)$ formado por las medidas absolutamente continuas respecto a μ .
- 2. Si $f: \Omega \to \mathbb{R}$, encontrar la descomposición de Hahn de λ_f .

Ejercicio 11. Dada una medida compleja μ definida en la σ -álgebra de Borel de \mathbb{R}^n se define su transformada de Fourier de T_{μ} como la función $T_{\mu}: \mathbb{R}^n \to \mathbb{C}$ dada por

$$T_{\mu}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \langle \xi, x \rangle} d\mu(x)$$

- 1. Ver que T_{μ} está bien definida y es una función acotada.
- 2. Si μ es absolutamente continua respecto de la medida de Lebesgue, ver que se verifica el Lema de Riemann-Lebesgue: $\lim_{|\xi| \to +\infty} T_{\mu}(\xi) = 0$.
- 3. Ver que esto puede no ser cierto cuando μ no es absolutamente continua respecto a la medida de Lebesgue.