ALGEBRA LINEAL - Práctica N°6 - Segundo cuatrimestre de 2017 Autovalores y autovectores - Diagonalización

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $K = \mathbb{R}$ y $K = \mathbb{C}$):

i)
$$A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, a \in \mathbb{R}$$
 ii) $A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$ iii) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$

$$\text{iv)} \quad A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, \ a \in \mathbb{R} \qquad \text{v)} \quad A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad \text{vi)} \quad A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ejercicio 2. Para cada una de las matrices A del ejercicio anterior, sea U una base de K^n y sea $f: K^n \to K^n$ la tranformación lineal tal que $|f|_U = A$. Decidir si es posible encontrar una base B de K^n tal que $|f|_B$ sea diagonal. En caso afirmativo, calcular C(B, U).

Ejercicio 3. Sea $A = (a_{ij}) \in K^{n \times n}$ tal que $\sum_{1 \le j \le n} a_{ij} = 1$ para todo i = 1, ..., n. Probar que 1 es autovalor de A y exhibir un autovector correspondiente.

Ejercicio 4. Diagonalizar las matrices $A \in \mathbb{R}^{n \times n}$ y $B \in \mathbb{R}^{6 \times 6}$ encontrando sus autovectores:

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \end{pmatrix}$$

Ejercicio 5. Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación. Mostrar que todo número real es un autovalor de δ y exhibir un autovector correspondiente.

Ejercicio 6.

- i) Sea $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in K^{2 \times 2}$. Determinar todos los $a, b \neq c \in K$ para los que A es diagonalizable.
- ii) Probar que toda matriz $A \in \mathbb{C}^{2\times 2}$ es diagonalizable o bien es semejante a una matriz del tipo $\begin{pmatrix} \alpha & 0 \\ 1 & \alpha \end{pmatrix}$.

Ejercicio 7. Hallar todos los valores de $k \in \mathbb{R}$ tales que la siguiente matriz es diagonalizable:

$$A = \begin{pmatrix} k & 1 & 2k + k^2 & -1 \\ 0 & k+1 & 0 & k^2 - 4 \\ 0 & 1 & k & 1 \\ 0 & 0 & 0 & k+1 \end{pmatrix}.$$

1

Ejercicio 8. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por:

$$f(x, y, z) = (-x - 2y + 6z, 4y, -x - 3y + 4z)$$

- i) Encontrar una base B de \mathbb{R}^3 tal que $|f|_B$ sea diagonal.
- ii) Calcular $\begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}^n, \ \forall n \in \mathbb{N}.$
- iii) Hallar, si es posible, una matriz $P \in \mathbb{R}^{3\times 3}$ tal que $P^2 = \begin{pmatrix} -1 & -2 & 6 \\ 0 & 4 & 0 \\ -1 & -3 & 4 \end{pmatrix}$.

Ejercicio 9. Sea $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

- i) Probar que, para todo $n \in \mathbb{N}$, $A^n \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix}$ donde F_i es el *i*-ésimo término de la sucesión de Fibonacci (es decir, $F_0 = 0$, $F_1 = 1$ y $F_{i+1} = F_i + F_{i-1}$ para todo $i \in \mathbb{N}$).
- ii) Encontrar una matriz $P \in GL(2,\mathbb{R})$ tal que $P^{-1}.A.P$ sea diagonal.
- iii) Hallar la fórmula general para el término F_n , $\forall n \in \mathbb{N}_0$.
- iv) Se define la sucesión $\{a_n\}_{n\in\mathbb{N}_0}$ de la siguiente manera:

$$\begin{cases} a_0 = 0, \ a_1 = 1, \ a_2 = 1 \\ a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n \quad \forall \ n \in \mathbb{N}_0 \end{cases}$$

Hallar una fórmula general para el término a_n , $\forall n \in \mathbb{N}_0$.

Ejercicio 10. Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6 x(t) + 2 y(t) \\ y'(t) = 2 x(t) + 3 y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

Sugerencia: Hallar una matriz $C \in GL(2,\mathbb{R})$ tal que $C^{-1}\begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}$ C sea diagonal y hacer el cambio de variables $\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

Ejercicio 11. Sea $A \in K^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

Ejercicio 12. Analizar la validez de las siguientes afirmaciones:

- i) $A \in \mathbb{R}^{n \times n}$ inversible \iff 0 no es autovalor de A.
- ii) $A \in \mathbb{R}^{n \times n}$ inversible, v autovector de $A \Rightarrow v$ autovector de A^{-1} .
- iii) $A \in \mathbb{R}^{n \times n}$ con n impar $\Rightarrow A$ admite un autovalor real.

Ejercicio 13.

- i) Sea $f:K^n\to K^n$ un proyector con dim $(\operatorname{Im}(f))=s$. Probar que f es diagonalizable y calcular el polinomio característico \mathcal{X}_f de f.
- ii) Sea K un cuerpo incluido en \mathbb{C} y sea $f:K^n\to K^n$ un morfismo nilpotente. Calcular \mathcal{X}_f . ¿Es f diagonalizable?

Ejercicio 14. Sea $A \in \mathbb{R}^{n \times n}$ una matriz que verifica $A^2 + I_n = 0$. Probar que A es inversible, que no tiene autovalores reales y que n debe ser par.

Ejercicio 15. Sea V un K-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal tal que $\dim(\mathrm{Im}(f))=1$.

Probar que f es diagonalizable si y sólo si $Nu(f) \cap Im(f) = \{0\}.$

(*) Ejercicio 16. Sea $f: \mathbb{C}^n \to \mathbb{C}^n$ una transformación lineal. Probar que existe una base B de \mathbb{C}^n tal que $|f|_B$ es triangular superior.

Ejercicio 17. Sea $A \in \mathbb{C}^{n \times n}$ y sean $\lambda_1, \dots, \lambda_n$ las raíces de \mathcal{X}_A contadas con multiplicidad. Probar que $\det(A) = \prod_{i=1}^n \lambda_i$ y $tr(A) = \sum_{i=1}^n \lambda_i$.

Ejercicio 18.

- i) Sea $A \in \mathbb{R}^{3\times 3}$ diagonalizable con tr(A) = -4. Calcular los autovalores de A, sabiendo que los autovalores de $A^2 + 2A$ son -1, 3 y 8.
- ii) Sea $A \in \mathbb{R}^{4\times 4}$ tal que $\det(A) = 6$; 1 y -2 son autovalores de A y -4 es autovalor de $A 3I_4$. Hallar los restantes autovalores de A.

Ejercicio 19. Sean $A \in K^{m \times n}$ y $B \in K^{n \times m}$.

- i) Probar que las matrices $\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}$ de $K^{(m+n)\times(m+n)}$ son semejantes.
- ii) Deducir que, si n = m, $\mathcal{X}_{AB} = \mathcal{X}_{BA}$.

Ejercicio 20. Dadas las matrices $A \in \mathbb{C}^{2\times 2}$ y los polinomios $P \in \mathbb{C}[X]$, calcular P(A) para:

i)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, a) $P = X - 1$, b) $P = X^2 - 1$, c) $P = (X - 1)^2$

ii)
$$A = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}$$
, $P = X^3 - iX^2 + 1 + i$

Ejercicio 21. Hallar el polinomio minimal de las siguientes matrices (comparar con el polinomio característico):

i)
$$\begin{pmatrix} i & 0 \\ 1 & i \end{pmatrix}$$
 ii) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ iii) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ iv) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

$$\text{v)} \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \qquad \text{vi)} \quad \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 \\ 3 & 4 & 0 & -1 \end{pmatrix} \qquad \qquad \text{vii)} \quad \begin{pmatrix} 1 & i & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\text{viii)} \quad \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix} \quad \text{ix)} \quad \begin{pmatrix} a & 0 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 1 & a \end{pmatrix} \quad \text{x)} \quad \begin{pmatrix} a & 0 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix} \quad \text{xi)} \quad \begin{pmatrix} a & 0 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \end{pmatrix}$$

Ejercicio 22. Sea $A \in K^{n \times n}$ la matriz

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

Calcular su polinomio minimal y su polinomio característico.

Ejercicio 23. Calcular el polinomio minimal para cada una de las siguientes transformaciones lineales:

i)
$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], \ f(P) = P' + 2P$$

ii)
$$f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ f(A) = A^t$$

Ejercicio 24. Sea $\delta : \mathbb{R}[X] \to \mathbb{R}[X]$ la transformación lineal derivada. Probar que δ no admite polinomio minimal.

Ejercicio 25. Utilizando el Teorema de Hamilton-Cayley:

i) Calcular
$$A^4 - 4A^3 - A^2 + 2A - 5I_2$$
 para $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$.

ii) Calcular
$$A^{1000}$$
 para $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

iii) Dada
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$$
, expresar a A^{-1} como combinación lineal de A y de I_2 .

iv) Dada
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 5 \end{pmatrix}$$
, expresar a $(2A^4 - 12A^3 + 19A^2 - 29A + 37I_2)^{-1}$ como combinación lineal de A y de I_2 .

v) Calcular
$$\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}^n \ \forall n \in \mathbb{N}.$$

Ejercicio 26. Sea V un K-espacio vectorial de dimensión finita y sea $f: V \to V$ una transformación lineal. Probar que f es un isomorfismo si y sólo si el término constante de \mathcal{X}_f es no nulo. En dicho caso, hallar la expresión general de f^{-1} como polinomio en f.

Ejercicio 27. Exhibir una matriz $A \in \mathbb{C}^{n \times n}$ tal que $A^2 + I_n = 0$. Comparar con el Ejercicio 14.

Ejercicio 28.

- i) Hallar una matriz $A \in \mathbb{C}^{3\times 3}$ tal que $m_A(X) = X^3 5X^2 + 6X + 8$. Decidir si A es diagonalizable.
- ii) Hallar una matriz $A \in \mathbb{C}^{4\times 4}$ tal que $m_A(X) = X^4 + 4X^3 + 8X^2 + 8X + 4$. Decidir si A es diagonalizable.

Ejercicio 29. Sea $A \in K^{n \times n}$.

- i) Probar que si A es nilpotente, entonces existe $k \in \mathbb{N}$ tal que $m_A(X) = X^k$. Calcular todos los autovalores de A.
- ii) Si $K = \mathbb{C}$ y el único autovalor de A es el 0, probar que A es nilpotente. ¿Qué pasa si $K = \mathbb{R}$?

Ejercicio 30. Sea $A \in \mathbb{C}^{n \times n}$ una matriz de traza nula. Probar que A es semejante a una matriz que tiene toda la diagonal nula.

Ejercicio 31. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por f(x,y) = (x+2y, 2x-2y). Hallar todos los subespacios de \mathbb{R}^2 que sean f-invariantes.

Ejercicio 32. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal nilpotente tal que $f^n = 0$ y $f^{n-1} \neq 0$.

- i) Probar que para cada $0 \le i \le n$ existe un subespacio S_i de \mathbb{R}^n de dimensión i que es f-invariante.
- ii) Probar que existe un hiperplano de \mathbb{R}^n que es f-invariante pero que no admite un complemento f-invariante.

(*) Ejercicio 33.

- i) Sea V un K-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal diagonalizable. Si S es un subespacio de V que es f-invariante, probar que $f|_S:S\to S$ es diagonalizable.
- ii) Sean $A, B \in K^{n \times n}$ tales que AB = BA y sea $E_{\lambda}(A) = \{x \in K^n / Ax = \lambda x\}$. Probar que $E_{\lambda}(A)$ es B-invariante.
- iii) Sean $A, B \in K^{n \times n}$ dos matrices diagonalizables tales que A.B = B.A. Probar que existe $C \in GL(n, K)$ tal que $C^{-1}AC$ y $C^{-1}BC$ son diagonales. (Es decir, A y B se pueden diagonalizar simultáneamente.)