Álgebra I Práctica 3 - Combinatoria

- 1. Si hay 3 rutas distintas para ir de Buenos Aires a Rosario, 4 rutas distintas para ir de Rosario a Santa Fe, y 2 para ir de Santa Fe a Reconquista, ¿cuántas formas distintas hay para ir de Buenos Aires a Reconquista pasando por las dos ciudades intermedias?
- 2. i) ¿Cuántos números de exactamente 4 cifras (no pueden empezar con 0) hay que NO contienen al dígito 5?
 - ii) ¿Cuántos números de exactamente 4 cifras hay que contienen al dígito 7?
- 3. María tiene una colección de 17 libros distintos que quiere guardar en 3 cajas: una roja, una amarilla y una azul. ¿De cuántas maneras distintas puede distribuir los libros en las cajas?
- 4. Un estudiante tiene que cursar *al menos* 2 de las 6 materias que se dictan este cuatrimestre. ¿De cuántas maneras distintas puede elegir qué materias cursar?
- 5. ¿Cuántos números de exactamente 4 cifras hay que contienen al menos un par de dígitos consecutivos iguales? ¿Y si además el dígito de las decenas no puede ser un 6?
- 6. ¿Cuántos números de 5 cifras distintas se pueden armar usando los dígitos del 1 al 5? ¿Y usando los dígitos del 1 al 7?
- 7. 7 actores deben ordenarse en una fila para realizar el saludo al final de la obra. ¿De cuántas maneras distintas lo pueden hacer? Si el actor X debe ir sí o sí en el centro de la fila, ¿de cuántas maneras distintas pueden ordenarse los demás?
- 8. ¿Cuántos números de 7 cifras distintas se pueden armar usando los dígitos del 1 al 7 de manera que el dígito de las centenas no sea el 2? ¿Y si además el dígito de las unidades tampoco debe ser el 2?
- 9. i) Alrededor de una mesa circular hay 10 asientos. ¿De cuántas maneras distintas puede sentarse a la mesa un grupo de 10 personas? (Nota: en este problema no importa en qué asiento se ubica cada uno sino solamente el orden relativo entre las personas.)
 - ii) La misma pregunta que en i), pero ahora con 13 asientos (tres de ellos deben quedar vacíos).
- 10. i) ¿Cuántos subconjuntos de 4 elementos tiene el conjunto {1, 2, 3, 4, 5, 6, 7}?
 - ii) ¿Y si se pide que 1 pertenezca al subconjunto?
 - iii) ¿Y si se pide que 1 no pertenezca al subconjunto?
 - iv) ¿Y si se pide que 1 ó 2 pertenezcan al subconjunto, pero no simultáneamente los dos?
- 11. Sea $A = \{n \in \mathbb{N} \mid n \le 20\}$. Calcular la cantidad de subconjuntos $B \subseteq A$ que cumplen las siguientes condiciones:
 - i) B tiene 10 elementos y contiene exactamente 4 múltiplos de 3.
 - ii) B tiene 5 elementos y no hay dos elementos de B cuya suma sea impar.
 - iii) B tiene 10 elementos y no hay dos elementos de B cuya suma sea 21.
- 12. De una caja que contiene 122 bolillas numeradas de 1 a 122 se extraen cinco bolillas. ¿Cuántos resultados posibles hay si
 - i) las bolillas se extraen una a la vez y se descartan después de extraerlas?
 - ii) las bolillas se extraen una a la vez y se devuelven a la caja después de extraerlas?
 - iii) las bolillas se extraen todas juntas?
- 13. Dadas dos rectas paralelas en el plano, se marcan n puntos distintos sobre una y m puntos distintos sobre la otra. ¿Cuántos triángulos se pueden formar con vértices en esos puntos?

14. Probar las siguientes afirmaciones:

$$\text{i) } \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \ \forall n \geq 0.$$

$$\text{vi) } k \binom{n}{k} = n \binom{n-1}{k-1}, \ \forall n \geq k \geq 1.$$

$$\text{vii) } \frac{4^{n}}{2n+1} < \binom{2n}{n} < 4^{n}, \ \forall n \geq 1.$$

$$\text{vii) } \sum_{k=1}^{n} k \binom{n}{k} = n 2^{n-1}, \ \forall n \geq 1.$$

$$\text{viii) } \sum_{k=1}^{n} k \binom{n}{k} = n 2^{n-1}, \ \forall n \geq 1.$$

$$\text{viii) } \sum_{k=1}^{n} k \binom{n}{k} = n 2^{n-1}, \ \forall n \geq 1.$$

$$\text{viii) } \sum_{k=1}^{n} \binom{n}{k} \binom{m}{\ell-k} = \binom{n+m}{\ell}, \ \forall n, m, \ell \in \mathbb{N}.$$

$$\text{viii) } \sum_{k\geq 0} \binom{n}{k} \binom{m}{\ell-k} = \binom{n+m}{\ell}, \ \forall n, m, \ell \in \mathbb{N}.$$

$$\text{viii) } \sum_{k\geq 0} \binom{n}{k} \binom{m}{\ell-k} = \binom{n+m}{\ell}, \ \forall n, m, \ell \in \mathbb{N}.$$

$$\text{viii) } \sum_{k\geq 0} \binom{n}{k} \binom{n}{\ell-k} = \binom{n+m}{\ell}, \ \forall n \geq 0.$$

$$\text{viii) } \sum_{k\geq 0} \binom{n}{k} \binom{m}{\ell-k} = \binom{n+m}{\ell}, \ \forall n \geq 0.$$

- 15. ¿Cuántas palabras (anagramas) se pueden formar usando todas las letras de:
 - i) MURCIÉLAGO?
 - ii) ELEMENTOS?
 - iii) COMBINATORIO?
- 16. ¿Cuántos anagramas de BIBLIOTECARIA pueden formarse
 - i) con la condición de que todas las vocales estén juntas?
 - ii) con la condición de que la T esté a la derecha de la C?
 - iii) con la condición de que la T esté a la derecha de la C y la C a la derecha de la R?
 - iv) con la condición de que las dos A estén juntas?
- 17. ¿Cuántas palabras de seis letras se pueden formar con las letras de REPELER?
- 18. Se tienen n cajas numeradas de 1 a n.
 - i) ¿De cuántas formas se pueden distribuir k bolitas indistinguibles entre sí en las cajas?
 - ii) ¿De cuántas formas se pueden distribuir k bolitas numeradas de 1 a k en las cajas?
- 19. ¿De cuántas maneras se pueden ubicar 22 bolitas indistinguibles en 9 cajas numeradas con la condición de que:
 - i) ninguna caja debe quedar vacía?
 - ii) la quinta caja debe quedar vacía?
 - iii) la tercera caja debe quedar vacía y la sexta debe contener exactamente 3 bolitas?
 - iv) queden exactamente dos cajas vacías?
 - v) queden a lo sumo tres cajas vacías?
 - vi) queden por lo menos cuatro cajas vacías?
 - vii) la primera caja debe contener exactamente 4 bolitas, la tercera debe contener por lo menos 5 bolitas y la última caja debe contener a lo sumo una bolita?
- 20. Se extraen 23 bolitas de una caja que contiene 100 bolitas blancas, 100 bolitas azules, 100 bolitas negras y 100 bolitas rojas. ¿Cuántos resultados posibles hay?
- **21**. ¿Cuántos números del conjunto $\{1, 2, 3, \dots, 1000\}$ hay que no sean divisibles por 2, por 3 ni por 5?
- 22. Se tienen cuatro cajas numeradas de 1 a 4 y cuatro bolitas también numeradas de 1 a 4. Se quiere colocar una bolita en cada caja, de manera que ninguna bolita quede en la caja que tiene su mismo número. ¿De cuántas maneras distintas se puede hacer esto?

Combinatoria de conjuntos, relaciones y funciones

- **23**. Si A es un conjunto con n elementos y B es un conjunto con m elementos, ¿cuántas relaciones de A en B hay? ¿Y de B en A?
- 24. Si A es un conjunto con n elementos, ¿cuántas relaciones en A hay? ¿Cuántas de ellas son reflexivas? ¿Cuántas de ellas son simétricas? ¿Cuántas de ellas son antisimétricas? ¿Cuántas de ellas son reflexivas y simétricas?
- **25**. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Se define la relación \mathcal{R} en $\mathcal{P}(X)$ en la forma

$$A \mathcal{R} B \iff A \cap \{1, 2, 3\} = B \cap \{1, 2, 3\}.$$

- i) Probar que \mathcal{R} es una relación de equivalencia y describir la clase \overline{A} de $A = \{1, 3, 5\}$.
- ii) ¿Cuántos elementos tiene la clase \overline{A} de $A = \{1, 3, 5\}$?
- iii) ¿Cuántos conjuntos $B \in \mathcal{P}(X)$ de exactamente 5 elementos tiene la clase de equivalencia \overline{A} de $A = \{1, 3, 5\}$?
- **26**. Sea $X = \{1, 2, \dots, 20\}$. Se define la siguiente relación \mathcal{R} en $\mathcal{P}(X)$:

$$A \mathcal{R} B \iff A - B = \emptyset.$$

- i) Probar que \mathcal{R} es una relación de orden.
- ii) ¿Cuántos conjuntos $B \in \mathcal{P}(X)$ cumplen que $\{1, 2, 3, 4, 5, 6\} \mathcal{R} B$?
- iii) ¿Cuántos conjuntos $A \in \mathcal{P}(X)$ cumplen simultáneamente #A = 6 y $A \mathcal{R} \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?
- 27. Sea $X = \{n \in \mathbb{N} : n \leq 2016\}$. Definimos la relación \mathcal{R} en $\mathcal{P}(X)$ dada por

$$ARB \iff \#(A\triangle B) < 3.$$

Decidir si la relación es reflexiva, simétrica, antisimétrica, o transitiva. Para $A = \{4, 8, 15, 16, 23, 42\}$ hallar la cantidad de conjuntos $B \in \mathcal{P}(X)$ tales que $A\mathcal{R}B$.

28. Sea A el conjunto formado por las 2016-tuplas $x = (x_1, x_2, \dots, x_{2016})$ de ceros y unos cuyos elementos suman 17. Definimos la relación \mathcal{R} en A dada por

$$x\mathcal{R}y \iff x_1y_1 + x_2y_2 + \dots + x_{2016}y_{2016} = 0.$$

Decidir si la relación \mathcal{R} es reflexiva, simétrica, antisimétrica o transitiva. Para cada elemento $x \in A$ hallar la cantidad de elementos $y \in A$ tales que $x\mathcal{R}y$.

- **29**. i) Sea A un conjunto con 2n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
 - ii) Sea A un conjunto con 3n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
- **30**. Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sea \mathcal{F} el conjunto de todas las funciones $f: A \to B$.
 - i) ¿Cuántos elementos tiene el conjunto \mathcal{F} ?
 - ii) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F} : 10 \notin \text{Im}(f)\}$?
 - iii) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$?
 - iv) ¿Cuántos elementos tiene el conjunto $\{f \in \mathcal{F} : f(1) \in \{2,4,6\}\}$?

- **31.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{8, 9, 10, 11, 12, 13, 14\}$.
 - i) ¿Cuántas funciones biyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas funciones biyectivas $f: A \to B$ hay tales que $f(\{1,2,3\}) = \{12,13,14\}$?
- **32.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - i) ¿Cuántas funciones inyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas de ellas son tales que f(1) es par?
 - iii) ¿Cuántas de ellas son tales que f(1) y f(2) son pares?
- 33. ¿Cuántas funciones biyectivas $f:\{1,2,3,4,5,6,7\} \rightarrow \{1,2,3,4,5,6,7\}$ hay tales que

$$f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$$
?

34. Sea A el conjunto de todas las funciones inyectivas $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$. Se define la siguiente relación \mathcal{R} en A:

$$f \mathcal{R} g \iff f(1) + f(2) = g(1) + g(2).$$

- i) Probar que \mathcal{R} es una relación de equivalencia.
- ii) Sea $f \in A$ la función definida por f(n) = n + 2. ¿Cuántos elementos tiene su clase de equivalencia?