Análisis Numérico

Segundo Cuatrimestre 2017

Práctica N° 5: Elementos Finitos 1D

Espacios de Sobolev

- **Ejercicio 1** a) Probar que la función definida como $h(x) = \exp(-1/x^2)$ para x > 0, h(x) = 0 para $x \le 0$, pertenece a $C^{\infty}(\mathbb{R})$.
 - b) Probar que la función g(x) = h(x-a)h(b-x), a < b es $C^{\infty}(\mathbb{R})$ con soporte en [a,b].
 - c) Construir una función en $C_0^{\infty}(\mathbb{R}^n)$ con soporte en una bola o en un intervalo.
- **Ejercicio 2** a) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0 \ \forall g \in L^2(I)$. Probar que f = 0 c.t.p.
 - b) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0$ para toda $g \in C_0^k(I)$. Probar que f = 0 c.t.p.
 - c) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0$ para toda $g \in C_0^\infty(I)$. Probar que f = 0 c.t.p.
- **Ejercicio 3** a) Demostrar que si $f, g \in L^p$ son tales que $\int_I f \phi' = -\int_I g \phi$ para toda $\phi \in C_0^1(I)$ entonces g es única.
 - b) Si la f del item previo es derivable entonces f' = g.
- **Ejercicio 4** a) Dada una función $\psi \in C_0^0(I)$ tal que $\int_I \psi = 1$ probar que $\theta = \omega (\int_I \omega) \psi \in C_0^0(I)$ para todo $\omega \in C_0^1(I)$, además $\int_I \theta = 0$.
 - b) Si I=(a,b), sea $\phi(x)=\int_a^x \theta$, probar que $\phi(x)\in C_0^1(I)$, más aún $\phi'=\theta$.
 - c) Si f en L^1_{loc} y $\int_I f \phi' = 0$ para toda $\phi \in C^1_0(I)$ entonces f = cte c.t.p. (Sug. tomar ϕ como en el item previo y utilizar el Ejercicio 2).
- **Ejercicio 5** Si $g \in L^1_{loc}(I)$ tomar $c \in I$ cualquiera, y escribir para $x \in I$ $\int_c^x g = v(x)$, entonces $\int_I v \phi' = -\int_I g \phi$ para todo $\phi \in C^1_0(I)$.
- **Ejercicio 6** Utilizando el ejercicio previo y tomando f y g como en el Ejercicio 3 deducir la identidad $f(x) = f(c) + \int_{c}^{x} g$ para casi todo x.
- Ejercicio 7 Probar que si $f \in H^1(I)$ entonces $||f||_{\infty} \leq C||f||_{H^1}$.

Ejercicio 8 Usando el ejercicio previo demostrar que si $u \in H_0^1(I)$, con I = (a, b) entonces u(a) = u(b) = 0. Probar, utilizando este hecho, que para I acotado en \mathbb{R} existe una constante C (dependiente de |I|) tal que

$$||u||_{L^2} \le C||u'||_{L^2} \quad \forall u \in H_0^1$$
 (Designaldad de Poincaré)

y por ende

$$||u||_{H^1(0.1)} \le C||u'||_{L^2} \quad \forall u \in H_0^1$$

Ejercicio 9 Sea I = (-1, 1). Comprobar que:

a) La función $u(x) = \frac{1}{2}(x + |x|)$ pertenece a $W^{1,p}(I)$ para todo $1 \le p \le \infty$ y que u' = H, donde H es la función de Heaviside:

$$H(x) = \begin{cases} 1 & \text{si} & 0 < x < 1 \\ 0 & \text{si} & -1 < x < 0 \end{cases}$$

b) La función $H \notin W^{1,p}$ para $1 \le p \le \infty$.

Ejercicio 10 Sea

$$u(x,y) = \frac{1}{\|(x,y)\|^{\epsilon}}$$

 $con 0 < \epsilon < 1 y (x, y) \in B_R(0).$

- a) Probar que u tiene derivadas generalizadas de primer orden en $L^1(B_R(0))$; $u \in L^2(B_R(0))$ pero u no tiene representante continuo en $B_R(0)$.
- b) Encontrar los valores de p para los que $u \in W^{1,p}(B_R(0))$.

Ejercicio 11 a) Demostrar que la función

$$u(x,y) = |\ln(x^2 + y^2)|^{\frac{1}{3}}$$

está en $H^1(B_{\frac{1}{2}})$ donde $B_{\frac{1}{2}}=\{(x,y)\in\mathbb{R}^2, x^2+y^2<\frac{1}{2}\}.$

b) ¿Para que valores de α la función $u(x,y) = |\ln(x^2 + y^2)|^{\alpha}$ está en $H^1(B_{\frac{1}{2}})$? Concluir que las funciones de H^1 no son necesariamente acotadas y por ende el resultado del Ejercicio 7 no se extiende a más dimensiones.

Teoría de Elementos Finitos 1D

Ejercicio 12 Probar que las siguientes formas bilineales son continuas y coercitivas en los respectivos espacios V

- a) $V = \mathbb{R}^n$, $a(u, v) = vAu^t$ con $A \in \mathbb{R}^{n \times n}$, A definida positiva.
- b) $V = L^2(0,1), a(u,v) = \int_0^1 u(x)v(x)\rho(x)dx$, con $\rho(x) > 0$ y continua en [0,1].

- c) $V = H^1(0,1), a(u,v) = \int_0^1 (u(x)v(x)\rho_1(x) + u'(x)v'(x)\rho_2(x))dx$, con $\rho_i(x) > 0$ y continuas en [0,1].
- d) $V = H_0^1(0,1), \ a(u,v) = \int_0^1 u'(x)v'(x)\rho(x)dx, \ \rho(x) > 0$, continua en [0,1].
- e) $V = H^1(0,1), \ a(u,v) = \int_0^1 (u'(x)v'(x)\rho_1(x) + ku'(x)v(x) + u(x)v(x)\rho_2(x))dx$ com ρ_i como en los items previos, y k constante suficientemente chico. Es esta forma bilineal simétrica?

Ejercicio 13 Para los problemas 3 y 5 de la práctica anterior

- a) Probar que existe una solución única en $H_0^1(I)$ de la formulación débil.
- b) Probar que la solución débil es suficientemente regular (esto es, que pertenece a $C^2(\overline{I})$), y que proporciona una solución clásica.

Ejercicio 14 Sea I = (0,1) y sean x_i tales que $0 = x_0 < x_1 < \cdots < x_{N-1} < x_N = 1$ una partición de I.

a) Definimos para cada $1 \le i \le N - 1$, $G_i(x) = \begin{cases} (1 - x_i)x & 0 \le x \le x_i \\ x_i(1 - x) & x_i \le x \le 1 \end{cases}$ Verificar que $G_i \in H_0^1(0, 1)$ y que $\forall w \in H_0^1(0, 1)$ se tiene que

$$\int_0^1 w'(s)G_i'(s)ds = w(x_i)$$

b) Dada $f \in L^2(0,1)$ considerar el problema

$$\begin{cases} -u'' = f \\ u(0) = u(1) = 0 \end{cases}$$

Escribir el problema en forma variacional sobre H_0^1 y dar formulación aproximada de Galerkin utilizando el espacio

$$V_h = \{ u \in H_0^1 \text{ tal que } u \in P_1(I_i) \text{ para todo } 0 \le i \le N-1 \}$$

- Demostrar que ambos problemas variacionales tienen solución única.
- Demostrar que $\int_0^1 (u u_h)' v_h' = 0$ para todo $v_h \in V_h$. De aquí y del item previo concluya que $u(x_i) = u_h(x_i)$, i.e, la solución obtenida numéricamente interpola a u en los nodos (aquí u_h denota la solución del problema discreto). Verificar que efectivamene, en el ejercicio 8 sucede eso.
- c) Hallar la matriz de rigidez (usando las bases de Lagrange).

Ejercicio 15 Demostrar que el problema variacional del ejercicio 11 de la práctica anterior tiene solución única sobre $H_0^2(0,1)$.

Ejercicio 16 Considerar el problema:

$$\left\{ \begin{array}{ll} -u''+\beta u'=f & x\in (0,1)\\ u(0)=u(1)=0 \end{array} \right.$$

siendo $\beta > 0$.

a) Plantear la formulación débil de este problema, de la forma:

$$a(u,v) = F(v) \quad \forall v \in V, \tag{1}$$

para un espacio adecuado V.

- b) Probar que F y a son continuas, y que si β es suficientemente chico, a es coercitiva. Concluya existencia y unicidad de solución para el problema débil.
- c) Sea \mathcal{T}_h una partición unifome del intervalo [0,1], de parámetro h>0 dada por $\{x_i\}$, $x_i=ih$. Sea

$$V_h = \{ f \in C([0,1]) : f|_{[x_i,x_{i+1}]} \in \mathcal{P}_1 \}.$$

Considerar el problema discretizado:

$$a(u,v) = F(v) \quad \forall v \in V_h$$
 (2)

Si $u_h \in V_h$ es la solución de (2), y u es la solución de (1), probar, utilizando el lema de Cèa, que

$$||u-u_h||_{H^1} \xrightarrow[h\to 0]{} 0$$

Ejercicio 17 Dada $f \in L^2(0,1)$, considere el siguiente problema:

$$\begin{cases} u \in C^{2}[0,1] \\ -u''(x) + au'(x) + u(x) = f(x) & 0 < x < 1, \quad a \in \mathbb{R} \\ u(0) = u'(1) = 0 \end{cases}$$

- a) Hallar la forma débil en un espacio adecuado V.
- b) Probar que si $u \in C^2([0,1])$ es una solución débil entonces es solución clásica del problema (incluyendo las condiciones de borde).
- c) Probar que si $u \in H^1(0,1)$ y u(0) = 0, entonces vale la desigualdad de Poincaré.
- d) Probar que si |a| < 2, existe una solución única en V de la formulación débil.
- e) Describir un espacio aproximante $V_h \subset V$, adecuado para este problema, y mostrar una base.

Ejercicio 18 Sea I = (0,1) y k(x) la función

$$k(x) = \begin{cases} k_1 & \text{si } x \in I_1 = (0, \frac{1}{2}) \\ k_2 & \text{si } x \in I_2 = (\frac{1}{2}, 1) \end{cases}$$

con $k_1, k_2 > 0$ constantes. Considerar el problema variacional: Hallar $u \in H^1_0(I)$ tal que

$$\int_{I} k(x)u'v' dx = \int_{I} v \qquad \forall v \in H_0^1(I).$$
(3)

a) Probar que (3) tiene una única solución u.

b) Probar que u es solución (en sentido clásico) de

$$\begin{cases}
-k(x)u'' = 1 & \text{en } I_1 \cup I_2 \\
u(0) = u(1) = 0 \\
u \text{ continua en } x = \frac{1}{2} \\
k_1 u'\left(\frac{1}{2}^{(-)}\right) = k_2 u'\left(\frac{1}{2}^{(+)}\right).
\end{cases}$$

- c) Discretizar la ecuación usando elementos finitos lineales sobre una malla uniforme con 2N intervalos de longitud $h=\frac{1}{2N}$. Hallar la matriz de rigidez y el vector independiente del sistema resultante de tamaño $(2N-1)\times(2N-1)$.
- d) Interpretar desde el punto de vista de diferencias finitas cómo queda impuesta la condición sobre la derivada de u en $x=\frac{1}{2}$ en la discretización dada en (c).