Ecuaciones Diferenciales – 2° cuatrimestre 2016

RESULTADOS PRELIMINARES

Ejercicio 1. Revisar los siguientes teoremas:

1. Teorema de la Función Inversa.

(http://en.wikipedia.org/wiki/Inverse_function_theorem)

2. Teorema de la Función Implícita.

(http://en.wikipedia.org/wiki/Implicit_function_theorem)

3. Teorema de Arzela – Ascoli.

(http://en.wikipedia.org/wiki/Arzela-Ascoli_theorem)

4. Teorema de la Partición de la Unidad.

(http://en.wikipedia.org/wiki/Partition_of_unity)

5. Teorema de la divergencia de Gauss.

(http://en.wikipedia.org/wiki/Divergence_theorem)

Ejercicio 2. Revisar los siguientes teoremas:

1. Teorema de convergencia monótona de Beppo Levi.

(http://en.wikipedia.org/wiki/Monotone_convergence_theorem)

2. Teorema de convergencia dominada de Lebesgue.

(http://en.wikipedia.org/wiki/Dominated_convergence_theorem)

3. Lema de Fatou.

(http://en.wikipedia.org/wiki/Fatou's_lemma)

Ejercicio 3 (Diferenciación bajo el signo integral). Sean $U \subset \mathbb{R}^n$ abierto, $V \subset \mathbb{R}^m$ medible, $f: U \times V \to \mathbb{R}$ medible y $x_0 \in U$.

1. Si $f(x,\cdot) \in L^1(V)$ para $|x-x_0| < \varepsilon$, $f(\cdot,y)$ es diferenciable en $|x-x_0| < \varepsilon$ para casi todo $y \in V$ y existe $g \in L^1(V)$ tal que $|\partial_{x_j} f(x,y)| \le g(y)$ para todo $|x-x_0| < \varepsilon$ y para casi todo $y \in V$, con $1 \le j \le n$ fijo, entonces la función $F(x) = \int_V f(x,y) \, dy$ es derivable para $|x-x_0| < \varepsilon$ respecto de x_j y se tiene que

$$\partial_j F(x) = \int_V \partial_{x_j} f(x, y) \, dy.$$

2. Verificar que si $\partial_{x_j} f$ es una función continua en $U \times \overline{V}$, con V abierto acotado, entonces verifica las hipótesis del item anterior.

Ejercicio 4. Sean $f, g: \mathbb{R} \to \mathbb{R}$ derivables.

1. Si $h: \mathbb{R} \to \mathbb{R}$ es continua, calcular la derivada de

$$F(x) = \int_{f(x)}^{g(x)} h(s) \, ds.$$

2. Si $h\colon\mathbb{R}^2\to\mathbb{R}$ es continua y $\partial_1 h$ es continua y acotada, calcular la derivada de

$$G(x) = \int_{f(x)}^{g(x)} h(x, s) ds.$$

Ejercicio 5. Sean $f, g: \mathbb{R}^n \to \overline{\mathbb{R}}$ medibles y $F: \mathbb{R}^n \times \mathbb{R}^n \to \overline{\mathbb{R}}$ medible. Demostrar los siguientes resultados.

1. Desigualdad de Hölder: Si $1 \leq p \leq \infty$ y $\frac{1}{p} + \frac{1}{p'} = 1$ entonces

$$||fg||_1 \le ||f||_p ||g||_{p'}.$$

2. Desigualdad de Minkowsky: Si $1 \le p \le \infty$, entonces

$$||f + g||_p \le ||f||_p + ||g||_p.$$

3. Desigualdad integral de Minkowsky: Si $1 \le p < \infty$, entonces

$$\left(\int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} F(x, y) \, dx \right|^p \, dy \right)^{1/p} \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |F(x, y)|^p \, dy \right)^{1/p} \, dx.$$

Ejercicio 6. Sean $f \in L^p(\mathbb{R}^n)$ y $h \in \mathbb{R}^n$. Se define $\tau_{-h}f(x) := f(x+h)$. Probar los siguientes resultados.

- 1. Para $1 \leq p < \infty$, $\lim_{h\to 0} \|\tau_{-h}f f\|_p = 0$. Pista: usar que $C_c(\mathbb{R}^n)$ es denso en $L^p(\mathbb{R}^n)$, $1 \leq p < \infty$.
- 2. Mostrar que el item anterior no vale para $p = \infty$.

Ejercicio 7 (Desigualdad de Young). Sea $f \in L^1(\mathbb{R}^n)$, $g \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Probar que entonces $f * g \in L^p(\mathbb{R}^n)$ con $||f * g||_p \leq ||f||_1 ||g||_p$, donde el producto de convolución f * g se define como

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy.$$

Ejercicio 8. Sea $1 \leq p \leq \infty$ y p' el exponente conjugado (i.e. $\frac{1}{p} + \frac{1}{p'} = 1$ con la extensión obvia $\frac{1}{0} = \infty$ y $\frac{1}{\infty} = 0$). Si $f \in L^p(\mathbb{R}^n)$, $g \in L^{p'}(\mathbb{R}^n)$, entonces $f * g \in L^{\infty}(\mathbb{R}^n)$ y se tiene que $||f * g||_{\infty} \leq ||f||_p ||g||_{p'}$. Más aún, f * g es uniformemente continua.

Ejercicio 9. Sean $f \in C_c^k(\mathbb{R}^n)$ $(k \in \mathbb{N})$, $g \in L^1_{loc}(\mathbb{R}^n)$. Entonces $f * g \in C^k(\mathbb{R}^n)$ y $D^{\alpha}(f * g) = (D^{\alpha}f) * g$, para todo $|\alpha| \leq k$.

Ejercicio 10 (Núcleo regularizante estándar). Se define la función $\rho \colon \mathbb{R} \to \mathbb{R}$ como

$$\rho(t) := \begin{cases} e^{-\frac{1}{1-t^2}} & |t| < 1\\ 0 & |t| \ge 1 \end{cases}$$

Probar que $\rho \in C_c^{\infty}(\mathbb{R})$.

Mostrar que si se define $\rho_{\varepsilon} \colon \mathbb{R}^n \to \mathbb{R}$ como

$$\rho_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \rho\left(\frac{|x|}{\varepsilon}\right),$$

entonces $\rho_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ y sop $(\rho_{\varepsilon}) \subset B_{\varepsilon}(0)$. A la familia $\{\rho_{\varepsilon}\}_{{\varepsilon}>0}$ se la denomina núcleo regularizante estándar

Ejercicio 11 (Regularización por convolución). Sea $\rho \in L^1(\mathbb{R}^n)$ tal que

$$\int_{\mathbb{R}^n} \rho(x) \, dx = 1,$$

y para todo $\varepsilon > 0$ se define

$$\rho_{\varepsilon}(x) := \varepsilon^{-n} \rho(\frac{x}{\varepsilon}).$$

Probar que

- 1. Si $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty \Rightarrow \|f * \rho_{\varepsilon} f\|_p \to 0$ si $\varepsilon \to 0$.
- 2. Si $f \in L^{\infty}(\mathbb{R}^n)$ y f es uniformemente continua en $V \subset \mathbb{R}^n$, entonces

$$\sup_{x \in V'} |f * \rho_{\varepsilon}(x) - f(x)| \to 0 \text{ si } \varepsilon \to 0,$$

para todo $V' \subset\subset V$.

3. Si f es continua y acotada en \mathbb{R}^n , entonces $f * \rho_{\varepsilon}$ tiende uniformemente a f en cada compacto de \mathbb{R}^n .

- 4. Si además $\rho \in C_c^{\infty}(\mathbb{R}^n)$, $f \in L^p(\mathbb{R}^n) \Rightarrow f * \rho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$. 5. Calcular $f * \rho_{\varepsilon}$ si $f = \chi_{[a,b]}$ y ρ es la función del Ejercicio 10.

Ejercicio 12. Demostrar que $C_c^{\infty}(\mathbb{R}^n)$ es denso en $L^p(\mathbb{R}^n)$ $(1 \le p < \infty)$. Pista: las funciones de $L^p(\mathbb{R}^n)$ con soporte compacto son densas en $L^p(\mathbb{R}^n)$ $(1 \le p < \infty)$.

Ejercicio 13. Sea $U \subset \mathbb{R}^n$ medible. Probar que si $f \in L^1_{loc}(U)$ y $\int_U f\varphi \, dx = 0$ para toda $\varphi \in C_c^{\infty}(U)$, entonces f = 0 en casi todo punto.

Ejercicio 14. Probar que si $f \in L^1_{loc}(\mathbb{R})$ y $\int_{\mathbb{R}} f\varphi' dx = 0$ para toda $\varphi \in C_c^{\infty}(\mathbb{R})$, entonces fresulta constante.

Pista: tomar $g \in C_c^{\infty}(\mathbb{R})$ tal que $\int_{\mathbb{R}} g = 1$ y para cada $\varphi \in C_c^{\infty}(\mathbb{R})$, se verifica que $\varphi(x) - (\int \varphi)g(x)$ es la derivada de una función $C_c^{\infty}(\mathbb{R})$.

Ejercicio 15 (Fórmulas de Green). Sea $U \subset \mathbb{R}^n$ abierto con frontera de clase C^1 . El Teorema de la divergencia de Gauss dice que si $\mathbf{v} \colon \bar{U} \to \mathbb{R}^n$, $\mathbf{v} = \mathbf{v}(x) = (v_1(x), \dots, v_n(x)), v_i \in$ $C^1(U) \cap C^0(\bar{U}), \ 1 \le i \le n, \text{ entonces}$

$$\int_{U} \operatorname{div} \mathbf{v} \, dx = \int_{\partial U} \mathbf{v} \cdot \mathbf{n} \, dS,$$

donde $\mathbf{n} = \mathbf{n}(x)$ es el vector normal exterior unitario a ∂U y

$$\operatorname{div} \mathbf{v} = \nabla \cdot \mathbf{v} = \sum_{i=1}^{n} \partial_i v_i.$$

Usar dicho teorema para demostrar las Fórmulas de Green: Si $u,v\in C^2(U)\cap C^1(\bar U)$, entonces

(1°)
$$\int_{U} (v\Delta u + \nabla u \cdot \nabla v) dx = \int_{\partial U} v\partial_{\mathbf{n}} u dS,$$

(2°)
$$\int_{U} (v\Delta u - u\Delta v) dx = \int_{\partial U} (v\partial_{\mathbf{n}} u - u\partial_{\mathbf{n}} v) dS,$$

donde $\partial_{\mathbf{n}} u = \nabla u \cdot \mathbf{n}$ y

$$\Delta u = \operatorname{div}(\nabla u) = \nabla \cdot \nabla u = \sum_{i=1}^{n} \partial_{ii} u.$$

Ejercicio 16. Sea $U \subset \mathbb{R}^n$ abierto con frontera de clase C^1 . Sean $u, v \in C^1(U) \cap C^0(\bar{U})$. Usar el Teorema de la divergencia de Gauss para probar la Fórmula de integración por partes

$$\int_{U} u \partial_{i} v \, dx = -\int_{U} \partial_{i} u \, v \, dx + \int_{\partial U} u v \mathbf{n}_{i} \, dS,$$

donde $\mathbf{n} = (\mathbf{n}_1, \dots, \mathbf{n}_n)$ es el vector normal exterior unitario a ∂U .