Análisis Complejo - - Segundo Cuatrimestre de 2016

Práctica $N^{\circ}2$. Funciones Holomorfas - Logaritmos y Raices n-ésimas

1. Sea $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$. Probar que

$$\lim_{z \to z_0} f(z) = a + ib \iff \Big(\lim_{z \to z_0} \operatorname{Re}(f(z)) = a \text{ y } \lim_{z \to z_0} \operatorname{Im}(f(z)) = b\Big).$$

- 2. Sean $u, v : \mathbb{R}^2 \to \mathbb{R}$. Sean $f : \mathbb{C} \to \mathbb{C}$ definida por $f(x+iy) = u(x,y) + i v(x,y) y g : \mathbb{R}^2 \to \mathbb{R}^2$ definida por g(x,y) = (u(x,y), v(x,y)), tales que f es derivable en $z_0 = a + ib$.
 - (a) Probar que q es diferenciable en (a, b).
 - (b) Calcular

$$\lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{f(z_0 + h) - f(z_0)}{h} \text{ y } \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{f(z_0 + ih) - f(z_0)}{ih}$$

en términos de u y v. ¿Qué se deduce?

- (c) ¿Qué relación hay entre $|f'(z_0)|$ y el jacobiano de Dg(a,b)?
- 3. Sea $f: \mathbb{C} \to \mathbb{C}$ definida por:

$$f(x+iy) = \begin{cases} \frac{x^3 - y^3 + i(x^3 + y^3)}{x^2 + y^2} & \text{si } x + iy \neq 0\\ 0 & \text{si } x + iy = 0. \end{cases}$$

Verificar que f es continua en 0 y cumple las condiciones de Cauchy-Riemann pero no es derivable.

4. Analizar dónde son holomorfas las siguientes funciones de z = x + iy y hallar f'(z):

(a)
$$f(z) = y + ix$$
,

(g)
$$f(z) = z^3 - 2z$$
,

(b)
$$f(z) = \overline{z}$$

(h)
$$f(z) = z^2 \cdot \overline{z}$$
,

(c)
$$f(z) = x^2 - y^2 - 2xy + i(x^2 - y^2 + 2xy)$$
,

(i)
$$f(z) = \frac{z+1}{1-z}$$
,

(d)
$$f(z) = x^2 + iy^2$$
,

(j)
$$f(z) = \begin{cases} \frac{x+iy}{x^2+y^2} & \text{si } z \neq 0\\ 0 & \text{si } z = 0. \end{cases}$$

(d)
$$f(z) = x^2 + iy^2$$
,
(e) $f(z) = e^x(\cos y + i \sin y)$,
(f) $f(z) = e^{-y}(\cos x + i \sin x)$,

- 5. Una función $u: \mathbb{R}^2 \to \mathbb{R}$ de tipo \mathcal{C}^2 es armónica si verifica $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. A su vez, $v:\mathbb{R}^2\to\mathbb{R}$ es una conjugada armónica de u si la función $f:\mathbb{C}\to\mathbb{C}$ definida por f(x+iy)=u(x,y) + iv(x,y) es holomorfa.
 - (a) Probar que si la parte real y la parte imaginaria de una función holomorfa son \mathcal{C}^2 , entonces son armónicas. Deducir que si u es una función C^2 que admite una conjugada armónica, entonces u es armónica.
 - (b) Probar que si v v \tilde{v} son conjugadas armónicas de u, entonces v v \tilde{v} difieren en una constante.
 - (c) Hallar conjugadas armónicas, cuando sea posible, de las siguientes funciones:

i. $u_1(x,y) = x^2 - y^2$, ii. $u_2(x,y) = x^2y^2$, iii. $u_3(x,y) = 2x(1-y)$.

- (d) Probar que si v es conjugada armónica de u, las curvas de nivel de u y v se cortan de manera ortogonal.
- 6. Sea $\Omega \subset \mathbb{C}$ una región (es decir, un subconjunto de \mathbb{C} abierto, conexo y no vacío).
 - (a) Probar que para todos z_0 y z_1 en Ω existe una curva γ , \mathcal{C}^1 a trozos, tal que $\gamma(0)=z_0$ y $\gamma(1)=z_1.$
 - (b) Si f es holomorfa en Ω y $f' \equiv 0$ en Ω , probar que f es constante.
- 7. Sea $f: \mathbb{C} \to \mathbb{C}$ holomorfa. Demostrar:

(a) $\operatorname{Re}(f)$ cte $\Rightarrow f$ cte, (c) |f| cte $\Rightarrow f$ cte, (e) \overline{f} holomorfa $\Rightarrow f$ cte.

(b) Im(f) cte $\Rightarrow f$ cte, (d) arg(f) cte $\Rightarrow f$ cte,

- 8. Sean $L_1, \ldots, L_n \subseteq \mathbb{R}^2$ (o \mathbb{C}) n rectas distintas. Probar que si $g: \mathbb{C} \to \mathbb{C}$ es holomorfa y $g(\mathbb{C}) \subseteq L_1 \cup L_2 \cup \cdots \cup L_n$ entonces g es constante.
- 9. Sea Ω un abierto simétrico respecto del eje real y $f:\Omega\to\mathbb{C}$ holomorfa. Probar que la función $g:\Omega\to\mathbb{C}$ definida por $g(z)=f(\overline{z})$ es holomorfa.
- 10. Hallar todas las funciones holomorfas $f: \mathbb{C} \to \mathbb{C}$ tales que f'(0) = 1 y para todos $x, y \in \mathbb{R}$ se verifica que

$$f(x+iy) = e^x f(iy).$$

(Sugerencia: definiendo $c, s : \mathbb{R} \to \mathbb{R}$ tales que f(iy) = c(y) + is(y), probar que c' = -s y que s'=c.)

11. Hallar todas las funciones holomorfas $f:\mathbb{C}\to\mathbb{C}$ tales que para todos $x,y\in\mathbb{R}$ se verifica

$$f(x+iy) = f(x) + f(iy) + 2xyi.$$

12. Regla de L'Hospital. Sean f, g funciones holomorfas en z_0 tales que $f(z_0) = g(z_0) = 0$ y $g'(z_0) \neq 0$. Entonces:

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

- 13. Calcular:
 - (a) $\lim_{z \to i} \frac{z^{10}+1}{z^6+1}$,

(c) $\lim_{z \to e^{\frac{\pi i}{3}}} \frac{(z - e^{\frac{\pi i}{3}})z}{z^3 + 1}$,

(b) $\lim_{z\to 2i} \frac{z^2+4}{2z^2+(3-4i)z-6i}$

- (d) $\lim_{z\to i} \frac{z^2-2iz-1}{z^4+2z^2+1}$.
- 14. Sea $\gamma: \mathbb{R} \to \mathbb{C}$ una curva \mathcal{C}^1 . Sea $v = \gamma'(t_0)$ el número complejo que se obtiene transladando al origen el vector tangente a la curva en $t = t_0$. Sea $f : \mathbb{C} \to \mathbb{C}$ holomorfa y sea $z = f'(\gamma(t_0))$. Mostrar que zv es el número complejo que se obtiene transladando al origen el vector tangente a la curva $f \circ \gamma$ en $t = t_0$.

15. Sean $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{C}$ definidas por $\gamma_1(t) = t$ y $\gamma_2(t) = (1+i)t$. Sea $f : \mathbb{C} \to \mathbb{C}$, $f(z) = \operatorname{sen}(z) + z^4$. Calcular en qué ángulo se cortan las curvas $f \circ \gamma_1$ y $f \circ \gamma_2$ en t = 0.

Función logaritmo y raíces n-ésimas

- 16. Si $\Omega \subset \mathbb{C}^*$ es abierto, llamamos rama del logaritmo de z en Ω a toda función continua $g:\Omega \to \mathbb{C}$ tal que $e^{g(z)}=z$ para todo $z\in\Omega$.
 - (a) Demostrar que toda rama del logaritmo es inyectiva y holomorfa en Ω .
 - (b) Sean g_1, g_2 dos ramas de logaritmo en Ω . Demostrar que si Ω es conexo y existe $z_0 \in \Omega$ tal que $g_1(z_0) = g_2(z_0)$, entonces $g_1(z) = g_2(z) \forall z \in \Omega$.
 - (c) Demostrar que si existe una rama del logaritmo en Ω , entonces $S^1 \nsubseteq \Omega$.
- 17. Sean $g: \Omega \to \mathbb{C}$ una rama del logaritmo, $b \in \mathbb{C}$, $a \in \Omega$. Definimos $a^b = e^{b \cdot g(a)}$.
 - (a) Verificar que si $b \in \mathbb{Z}$, a^b no depende de la elección de g y coincide con $\underbrace{a \cdots a}_{b \text{ veces}}$.
 - (b) Calcular todos los valores que pueden tomar i^i , $(-1)^{\frac{3}{5}}$ y 1^{π} al considerar todas las posibles elecciones del logaritmo.
 - (c) Fijando una rama del logaritmo, mostrar que las funciones $h_1: \Omega \to \mathbb{C}, h_1(z) = z^b$ y $h_2: \mathbb{C} \to \mathbb{C}, h_2(z) = a^z$ son funciones holomorfas.
 - (d) Sean $z \in \Omega$, $a, b \in \mathbb{C}$ tales que $z^a \in \Omega$. ¿Qué relación hay entre z^{a+b} y $z^a z^b$? ¿Qué relación hay entre z^{ab} y $(z^a)^b$? ¿Y si se sabe que $b \in \mathbb{Z}$?
- 18. Sea log la rama principal del logaritmo definida en $\mathbb{C} \setminus \mathbb{R}_{<0}$. Probar que para todo $t \in \mathbb{R}$,

$$\arctan(t) = \frac{1}{2i} \log \left(\frac{i-t}{i+t} \right).$$

- 19. Sea $n \in \mathbb{N}$. Si $\Omega \subset \mathbb{C}^*$ es abierto, llamamos rama de la raíz n-ésima de z en Ω a toda función continua $g: \Omega \to \mathbb{C}$ tal que $g(z)^n = z$ para todo $z \in \Omega$. En tal caso, notaremos $\sqrt[n]{z}$ a g(z).
 - (a) Probar que si $\Omega = \mathbb{C} \setminus \mathbb{R}_{>0}$, hay exactamente dos ramas de \sqrt{z} en Ω . Definirlas.
 - (b) Probar que toda rama de \sqrt{z} es holomorfa.
 - (c) Si Ω es conexo y f es una rama de \sqrt{z} en Ω , entonces f y -f son todas las ramas.
- 20. Sea $\Omega = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Sea g(z) una rama del logaritmo definida en Ω y sea $\sqrt[3]{z}$ la rama de la función raíz cúbica definida en Ω por $\sqrt[3]{z} = e^{g(z)/3}$.
 - (a) Demostrar que para toda rama $g, \sqrt[3]{z}$ pertenece a Ω para todo z en Ω .
 - (b) Hallar todas las ramas g para las cuales $g(\sqrt[3]{z}) = \frac{1}{3}g(z)$ para todo z en Ω .
 - (c) Probar que si se cambia Ω por $\mathbb{C} \setminus \mathbb{R}_{\geq 0}$, aumenta la cantidad de ramas que satisfacen el item (b).