Topología

Segundo cuatrimestre - 2015 Sugerencias práctica 4

Compacidad y axiomas de separación

Compacidad

- 6. Por el absurdo, si K no está contenido en ningún X_n , hallar una sucesión de elementos $(x_{n_k})_{k\in\mathbb{N}}$, con $x_{n_k}\in K\smallsetminus X_{n_k}$ y contradecir la compacidad de K.
- 7. Para (a) \Longrightarrow (c), probar que X es completo y totalmente acotado.
- 10. Para (a) \Longrightarrow (b), tomar un cubrimiento por abiertos $\mathcal U$ de $f^{-1}(K)$. Para cada $y \in K$, $\mathcal U^y = \{U \in \mathcal U: f^{-1}(y) \cap U \neq \varnothing\}$, tiene un subcubrimiento finito $\{U_i^y: i \in F_y\}$. Luego $f^{-1}(y) \subseteq \cup_{i \in F_y} U_i^y =: V^x$. Vía f, hallar un cubrimiento por abiertos de K, y elegir finitos valores de y, los llamamos y_1, \cdots, y_n . Concluir que $\{U_i^{y_j}: i \in F_{y_j}, j \in \{1, 2, \cdots, n\}\}$ es subcubrimiento finito de $f^{-1}(K)$.
 - Para (a) \Longrightarrow (c), dado $F\subseteq X\times Z$ cerrado, para todo punto $(y,z)\notin (f\times 1_Z)(F)$ hallar un abierto de la forma $U\times V$ tal que $(y,z)\in U\times V\subseteq ((f\times 1_Z)(F))^c$.
 - Para (c) \Longrightarrow (d), sea $g: Z \to Y$. Si $p_Y: Z \times Y \to Y$ es la proyección sobre Y y $(\mathrm{id}_Z, g): Z \to Z \times Y$, escribir $g = p_Y \circ (\mathrm{id}_Z, g)$ y descomponer el pullback de f por g en dos pullbacks.
- 11. Se puede usar cualquiera de las definiciones equivalentes de función propia.

Axiomas de separación

- 28. Sea Z espacio topológico y $f:Z\to X$ una función. Supongamos $f_{\alpha}\circ f$ continua para todo α . Para ver que f es continua, probar que para todo F cerrado en X, $f^{-1}(F)$ es cerrado. Por hipótesis, para todo $x\notin F$, existe α_x tal que $f_{\alpha_x}(F)=\{0\}$ y $f_{\alpha_x}(x)=1$. Luego, se puede escribir $F=\bigcap_{x\notin F}f_{\alpha_x}^{-1}(\{0\})$.
- 29. Considerar $J = \{(U, V) \in \mathcal{B} \times \mathcal{B} : \bar{U} \cap \bar{V} = \emptyset\}.$
- 30 . Para ver que no es normal, considere los cerrados $F=\{(x,-x):x\in\mathbb{Q}\}$, $G=\{(x,-x):x\in\mathbb{I}\}$.
- 31. Para cada $x\in A$, existe $f_a:X\to I$ continua tal que $f_x(x)=0$, $f_x(B)=\{1\}$. $\mathcal{U}=\{U_x=f_x^{-1}([0,1/2)):x\in A\}$ tiene un subcubrimiento finito $\{U_{x_i}:i\in\{1,2,\cdots,n\}\}$. Si $g=\max\{f_{x_i},1/2\}$, f=2g-1 sirve.
- 33. Si X es localmente compacto pero no compacto, considere X^* .

Grupos topológicos

- 41. Como $\operatorname{mult}(e,e)=e$, existe un entorno básico $V_1\times V_2$ de (e,e) tal que $\operatorname{mult}(V_1\times V_2)\subseteq U$. El abierto $V=(V_1\cap V_2)\cap (V_1\cap V_2)^{-1}$ cumple $V.V\subseteq U$ y $V=V^{-1}$.
- 44. $GL(n,\mathbb{R})$ no es conexo ni compacto, $SL(n,\mathbb{R})$ es conexo, no compacto, $O(n,\mathbb{R})$ es compacto no conexo, $SO(n,\mathbb{R})$ es conexo y compacto.