Práctica 5

- 1. Analizar en cada caso la existencia de $\int_a^b f \ d\alpha$ y en los casos afirmativos calcularla.
 - (a) $\alpha:[a,b]\to\mathbb{R}$ una función arbitraria y f una función constante sobre [a,b].
 - (b) $\alpha:[a,b]\to\mathbb{R}$ una función continua con $\alpha(a)=a_0$, $\alpha(b)=b_0$; sea $c\in(a,b)$ y sea $f:[a,b]\to\mathbb{R}$ la función $f(x):=\left\{ \begin{array}{ll} 5 & \text{si } x\in[a,c)\\ 3 & \text{si } x=c\\ -1 & \text{si } x\in(c,b] \end{array} \right.$

¿Qué sucede si en lugar de tomar α continua sólo se sabe que α es continua en un entorno de c?

- (c) f como en el ítem anterior y $\alpha(x)=\left\{ \begin{array}{cc} 1 & \text{si } x\in[a,c] \\ -1 & \text{si } x\in(c,b] \end{array} \right.$
- (d) $f(x) = x^3$, $\alpha(x) = x^2$ y [a, b] = [-1, 3].
- (e) $f(x) = \alpha(x) = \cos(x)$ y $[a, b] = [0, \frac{\pi}{4}]$.
- 2. Supongamos que $\int_a^b f d\alpha$ existe y es igual a 0 para toda función monótona creciente f. ¿Qué puede decir sobre la función α ? Sugerencia. Para cada $c \in [a, b)$ considere la función monótona f_c definida como $f_c(x) = 0$ si $a \le x \le c$ y $f_c(x) = 1$ sino.
- 3. Sean $f, \alpha : [a, b] \to \mathbb{R}$. Para cada partición $\pi = \{x_0, ..., x_n\}$ del intervalo [a, b], se define $s_{\pi} := \sum_{k=1}^{n} f(t_k)[\alpha(x_k) \alpha(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$.

Demostrar que si $f \in \Re(\alpha)$ entonces existe una sucesión de particiones $(\pi_m)_{m \in \mathbb{N}}$ que cumple las condiciones:

- (a) $(\pi_m)_{m \in \mathbb{N}}$ es monótona en el sentido siguiente: si m < m' entonces $\pi_m \subset \pi_{m'}$.
- (b) $\lim_{m\to\infty} \parallel \pi_m \parallel = 0.$
- (c) $\lim_{\substack{m\to\infty\\s_{\pi_m}}} s_{\pi_m} = \int\limits_a^b f\ d\alpha$, independientemente de la elección de los t_k en cada suma
- (d) Si $(\sigma_m)_{m\in\mathbb{N}}$ es otra sucesión monótona de particiones tal que $\pi_m\subset\sigma_m$ para todo $m\in\mathbb{N}$ suficientemente grande, entonces cumple las condiciones (b) y (c) precedentes.

Si ahora $g, \beta: [a,b] \to \mathbb{R}$ son otras funciones, tales que $g \in \Re(\beta)$ y para cada partición π notamos $r_{\pi} := \sum_{k=1}^{n} g(t_{k})[\beta(x_{k}) - \beta(x_{k-1})]$, donde $t_{k} \in [x_{k-1}, x_{k}]$, deducir que entonces existe una sucesión de particiones $(\pi_{m})_{m \in \mathbb{N}}$ cumpliendo (a) y (b) tal que $\lim_{m \to \infty} s_{\pi_{m}} = \int_{a}^{b} f d\alpha$ y $\lim_{m \to \infty} r_{\pi_{m}} = \int_{a}^{b} g \ d\beta$.

- 4. Sean $f,g:[a,b]\to\mathbb{R}$ y sea $\alpha:[a,b]\to\mathbb{R}$ monótona creciente. Demostrar que si $f,g\in\Re(\alpha)$ y $f(x)\leq g(x)$, entonces $\int\limits_a^b f\ d\alpha\leq\int\limits_a^b g\ d\alpha$.
- 5. Para cada $x \in \mathbb{R}$ vamos a notar con |x| a la parte entera de x, es decir: |x| := $\max \left\{ n \in \mathbb{Z} / n \le x \right\}.$

Analizar la existencia de las integrales que siguen y en caso afirmativo calcularlas:

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$
 (b)
$$\int_{0}^{2} x d(x - \lfloor x \rfloor)$$
 (c)
$$\int_{-2}^{2} x^{2} d(|x|)$$

(c)
$$\int_{-2}^{2} x^2 d(|x|)$$

6. Sea $f:[a,b]\to\mathbb{R}.$ Para cada partición π de [a,b] se define

$$\pi(f) := \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|,$$

si
$$\pi = \{x_0, x_1, \dots, x_n\}.$$

Demostrar que si $\pi_1 \subset \pi_2$ son dos particiones de [a,b], entonces $\pi_1(f) \leq \pi_2(f)$.