ELEMENTOS DE CÁLCULO NUMÉRICO (M) - CÁLCULO NUMÉRICO Segundo Cuatrimestre de 2015

Práctica N°5: Interpolación

Ejercicio 1. Para cada uno de los conjuntos de datos dados, calcular el polinomio p(x) interpolador de grado menor o igual que 3, en la forma de Lagrange. Verificar utilizando el comando polyfit de Octave. Graficar el polinomio interpolador, usando el comando polyval.

X	-1	0	2	3
У	-1	3	11	27
X	-1	0	1	2
у	-3	1	1	3

Ejercicio 2. Repetir el ejercicio anterior usando el método de coeficientes indeterminados.

Ejercicio 3. Considere $\phi_i: C[0,1] \to \mathbb{R}$

$$\phi_0(f) = f(0)$$

$$\phi_1(f) = f(1)$$

$$\phi_2(f) = \int_0^1 f(t) dt$$

- 1. Encontrar una base $\{p_0, p_1, p_2\}$ de $\mathbb{R}_{\leq 2}[x]$ tal que, para todos $0 \leq i, j \leq 2$, $\phi_i(p_j)$ valga 1 si i = j y 0 si $i \neq j$.
- 2. Dada $f \in C[0,1]$ considere el interpolador $I_f(x) = \sum_{i=0}^2 \phi_i(f) p_i(x)$. Probar que para todo $p \in \mathbb{R}_{\leq 2}[x]$ se tiene $I_p = p$.

Ejercicio 4. a) Construir las tablas de diferencias divididas para los datos del Ejercicio 1, y emplearlas para construir los polinomios interpoladores.

b) Agregar a las tablas de datos del Ejercicio 1 el punto $x=4,\ y=1.$ Aumentar las tablas de diferencias divididas y calcular los polinomios interpoladores.

Ejercicio 5. Considerar la función $f(x) = \frac{1}{1+25x^2}$ en el intervalo [-1,1]. Graficar f junto con los polinomios que resultan de interpolar a f en los n+1 puntos equiespaciados $x_0 = -1, \ldots, x_i = x_0 + \frac{2i}{n}, \ldots, x_n = 1$; para n = 5, 10, 15.

Ejercicio 6. Repetir el Ejercicio 5 para la función $f_1: [-1,1] \to \mathbb{R}$, $f_1(x) = |x|$ y para la función $f_2: [-1,1] \to \mathbb{R}$, $f_2(x) = \sin(\pi x)$.

Ejercicio 7. Encontrar una función del tipo $2^{ax^3+bx^2+cx+d}$ que interpole la siguiente tabla de datos:

\boldsymbol{x}	-1	0	1	2
y	1	1	0.5	4

Ejercicio 8. Utilizando Octave, encontrar y graficar una función del tipo $e^{a_4x^4+a_3x^3+\cdots+a_0}$ que interpole a la función f(x) = 1/x en 5 nodos equiespaciados en el intervalo [1, 10].

- **Ejercicio 9.** a) Escribir un programa que reciba como input dos vectores \mathbf{x} e \mathbf{y} , calcule la tabla de diferencias divididas correspondiente y devuelva el polinomio que interpola los datos y, opcionalmente, la tabla de diferencias divididas.
 - b) Adaptar el programa anterior para que reciba, opcionalmente, como tercer parámetro una matriz A que represente una tabla de diferencias divididas parcial. Esta variante debe tomar los datos x e y y utilizarlos para completar la tabla A.

Ejercicio 10. Sea $f:[0,5] \to \mathbb{R}$, $f(x)=2^x$. Sea P_n un polinomio de grado n que interpola a f en n+1 puntos distintos cualesquiera de dicho intervalo. Demostrar que para todo $x \in [0,5]$,

$$|P_n(x) - f(x)| \le \frac{32(5^{n+1})}{(n+1)!}$$

Ejercicio 11. Sea f una función C^{∞} tal que para todo $k \in \mathbb{N}$ y para todo $x \in [a, b]$ se tiene:

$$|f^k(x)| \leqslant C^k k!$$

Mostrar que si $0 < C < \frac{1}{b-a}$ y P_n en un polinomio de grado n que interpola a f en n+1 puntos distintos, entonces P_n converge a f uniformemente, es decir, $\|f-P_n\|_{\infty} \to 0$ cuando n tiende a ∞ .

Ejercicio 12. Sea $f: [-1,1] \to \mathbb{R}$, $f(x) = \frac{1}{a+x}$. Sean $(x_n)_{n \geqslant 0}$ una sucesión arbitraria de puntos en [-1,1] y $P_n(x)$ el polinomio que interpola a f(x) en x_0, x_1, \ldots, x_n . Demostrar que si a > 3 entonces P_n converge a f uniformemente.

Ejercicio 13. a) Dado el intervalo [a, b], sea m el punto medio entre a y b y sea $0 < h \le (b-a)/2$. Sea p = m-h y q = m+h. Demostrar que para todo x en [a, b],

$$|(x-p)(x-q)| \leqslant \frac{(b-a)^2}{4}.$$

b) Sean $x_0 = a, \ldots, x_i = x_0 + \frac{b-a}{n}, \ldots, x_n = b, n+1$ puntos equiespaciados en el intervalo [a, b]. Demostrar que para todo x en [a, b],

$$|(x-x_0)\dots(x-x_n)| \le \frac{(b-a)^{n+1}}{2^{n+1}}.$$

Ejercicio 14. Sea $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = \sin(x)$. Sea P_n un polinomio de grado n que interpola a f en n+1 puntos equiespaciados en dicho intervalo. Demostrar que para todo $x \in [-\pi, \pi]$

$$|P_n(x) - f(x)| \le \frac{\pi^{n+1}}{(n+1)!},$$

y concluir que P_n converge uniformemente a f.

Ejercicio 15. Sea $f:[0,1] \to \mathbb{R}$, $f(x) = \sin(\pi x) + e^x$. Sea P_n el polinomio de grado n que interpola a f en n+1 puntos equiespaciados.

- a) Usando el ejercicio 13, acotar el error $||f P_n||_{\infty}$.
- b) Sea C_n la cota hallada en a). Para n = 1, 3, 5, graficar simultáneamente f, $f + C_n$, $f C_n$ y P_n .

Ejercicio 16. Dado un intervalo [a, b], mostrar cómo tienen que estar distribuidos n + 1 nodos $x_0 < x_1 < \cdots < x_n$ en [a, b] de modo que exista $x \in [a, b]$ tal que $|(x - x_0) \dots (x - x_n)|$ sea del orden de $(b - a)^{n+1}$.

Ejercicio 17. a) Hallar n de modo que el polinomio P_n que interpola a la función $f(x) = e^{2x}$ en los ceros de T_{n+1} verifique que $||f - P_n||_{\infty} \le 10^{-2}$ en [-1, 1].

b) Repetir el ítem anterior para $f(x) = e^x$, $x \in [0, 4]$.

Ejercicio 18. Para n=5,10,15; graficar simultáneamente el polinomio $W_{n+1}(x)=\prod_{i=0}^n (x-x_i)$, donde $x_i=-1+2i/n$; $i=0,\ldots,n$ y el polinomio de Tchebychev T_{n+1} .

Ejercicio 19. Repetir los Ejercicios 5 y 6 usando los polinomios que interpolan a la función f en los ceros del polinomio de Tchebychev de grado n + 1, para n = 5, 10, 15.

Ejercicio 20. Utilizar el método de coeficientes indeterminados para hallar un polinomio p de grado 2 que satisfaga:

$$p(1) = 0$$
, $p'(1) = 7$, $p(2) = 10$.

Ejercicio 21. Para ilustrar qué pasa cuando se desea interpolar no sólo una función sino también sus derivadas, consideramos el problema de hallar p de grado a lo sumo 3 que verifique:

- (a) p(0) = 1, p'(0) = 1, p'(1) = 2, p(2) = 1;
- (b) p(-1) = 1, p'(-1) = 1, p'(1) = 2, p(2) = 1;
- (c) p(-1) = 1, p'(-1) = -6, p'(1) = 2, p(2) = 1.

Usando el método de coeficientes indeterminados, demostrar que el problema (a) tiene solución única, el problema (b) no tiene solución, y el problema (c) tiene infinitas soluciones.

Ejercicio 22. Analizar para qué valores de x_0 , x_1 , x_2 , y α_0 , α_1 , α_2 existe un polinomio de grado 2 que satisface:

$$p(x_0) = \alpha_0, \ p(x_1) = \alpha_1, \ p'(x_2) = \alpha_2.$$

y cuándo este polinomio es único.

Ejercicio 23. a) Sea $f(x) = \cos(\pi x)$, hallar un polinomio de grado menor o igual que 3 que verifique

$$p(-1) = f(-1), p(0) = f(0), p(1) = f(1), p'(1) = f'(1).$$

b) Hallar un polinomio de grado menor o igual que 4 que verifique las condiciones del item anterior, más la condición

$$p''(1) = f''(1).$$

Ejercicio 24. Sea $f: [-1,1] \to \mathbb{R}$ la función $f(x) = e^{2x-1}$ y sean $x_0 < x_1 < \ldots < x_n$ los ceros del polinomio de Tchebychev, T_{n+1} . Se interpola a f con un polinomio P de grado $\leq n+1$ de modo que $P(x_0)=f(x_0),\ P(x_1)=f(x_1),\ldots,P(x_n)=f(x_n)$ y además $P'(x_n)=f'(x_n)$. Probar que si $n \geq 6$ entonces el error cometido en la interpolación sobre el intervalo [-1,1] es menor que 10^{-3} .

Ejercicio 25. Sea $f \in C^2[a, b]$, y sean $x_0 = a, x_1 = a + h, \dots, x_n = b$, donde h = (b-a)/n. Considerar la poligonal l(x) que interpola a f en los puntos x_i , $i = 0 \dots n$.

a) Probar que

$$|f(x) - l(x)| \le \frac{h^2}{2} \max_{t \in [a,b]} |f''(t)|.$$

b) Para los $x \in [a, b]$ tales que l es derivable, probar que

$$|f'(x) - l'(x)| \le h \max_{t \in [a,b]} |f''(t)|.$$