ELEMENTOS DE CÁLCULO NUMÉRICO (M) - CÁLCULO NUMÉRICO Segundo Cuatrimestre de 2015

Práctica N°4: Resolución de ecuaciones no lineales.

Ejercicio 1 Implementar un programa que reciba como input una función f, dos números a, b, y una tolerancia tol y aplique el método de bisección para aproximar una raíz de f en el intervalo [a, b], garantizando que el error cometido sea menor que tol.

Ejercicio 2 Implementar un programa como el del ejercicio anterior para el método de Regula Falsi.

Ejercicio 3 Elegir un intervalo apropiado y utilizar los métodos de bisección y Regula Falsi para hallar una raíz positiva de la ecuación trascendente:

$$2x = \tan(x)$$

¿Cuántos pasos hay que hacer para garantizar que el error sea menor que 10^{-5} ?

Ejercicio 4 Implementar un programa que reciba como input una función f, su derivada f' y un punto inicial x_0 y aplique el método de Newton-Raphson para buscar una raíz de f a partir de x_0 .

Ejercicio 5 Implementar un programa que reciba como input una función f y dos puntos x_0 y x_1 y aplique el método de la secante para buscar una raíz de f con datos iniciales x_0 y x_1 .

Ejercicio 6 Aproximar $\sqrt[3]{2}$ utilizando el método de bisección con intervalo inicial [1, 2], el método N-R, comenzando con $x_0 = 2$ y el método de la secante con $x_0 = 3$, $x_1 = 2$.

Ejercicio 7 Considerar la función $f(x) = \frac{x}{1+|x|}$. Determinar para qué valores de x_0 la iteración N-R es convergente, para cuáles es divergente, y cuándo se obtienen ciclos periódicos.

Ejercicio 8 Demostrar que la ecuación

$$f(x) = e^x + 5\sin x - 2 = 0$$

tiene una única raíz r en el intervalo $(0, \frac{3}{2})$. Encontrar un valor inicial en este intervalo de modo que el método N-R converja a r. Aplicar el método para hallar una aproximación de r.

Ejercicio 9 Sea una función suave f y sea a tal que f(a) = 0 y $f'(a) \neq 0$. Suponiendo que en (a, b] f, f'y f'' son positivas, probar que la iteración de N-R generada a partir de $x_0 \in (a, b)$ converge decrecientemente hacia a.

Ejercicio 10 La ecuación $x^3 + \cos(x) + 7x = 0$ tiene una única raíz real.

- 1. Demostrar que el método de Newton-Raphson converge para todo valor inicial en (-1,0).
- 2. Demostrar que si $x_0 = -0.5$, el error *n*-ésimo es menor o igual que $\frac{12}{7}(\frac{7}{24})^{2^n}$.
- 3. Calcular cuántos pasos del método son necesarios para aproximar la solución con error menor o igual que 10^{-100} .

Ejercicio 11 Sea $f: \mathbb{R} \to \mathbb{R}, f(x) = (x+1)e^x - 4.$

- 1. Probar que el método de Newton-Raphson es convergente para todo $x_0 > 1$.
- 2. Analizar la convergencia del método si se toma como valor inicial $x_0 = -3$.

Ejercicio 12

Sea $f: \mathbb{R} \to \mathbb{R}$ con una única raíz r y tal que $f'(x) > \delta > 0$. Se desea aplicar el método de Newton Raphson para hallar r.

- 1. Probar que si f(x) > f'(x)(x-r) para todo x > r entonces se tiene que $x_1 < r$ para todo dato inicial $x_0 > r$.
- 2. Probar que si f''(x) < 0 para todo x < r, entonces el método genera una sucesión creciente que converge a r para todo $x_0 < r$. Concluir que si se cumplen ambas condiciones, el método converge.
- 3. Probar que Newton Raphson converge a la única raíz de $f(x) = -e^{-x} + 5x$ para todo dato inicial x_0 .

Ejercicio 13 Dada $F:\mathbb{R}^n\to\mathbb{R}^n$ el método N-R generalizado consiste en realizar la iteración vectorial

$$x^{k+1} = x^k - (DF|_{x^k})^{-1} \cdot F(x^k),$$

donde $(DF|_{x^k})^{-1}$ es la inversa de la matriz diferencial de F evaluada en x^k . Usar la versión generalizada a varias variables del método N-R para para resolver el sistema de ecuaciones

$$2x - 3y = 0$$
, $x^2 - y^2 - 3 = 0$

comenzando con valor inicial $(x_0, y_0) = (2, 1)$.

Ejercicio 14 Aproximar la solución positiva de la ecuación $\cos(x) = 2x$, comenzando con $x_0 = 0.5$ y utilizando la iteración de punto fijo $x_{n+1} = \frac{1}{2}\cos(x_n)$. Graficar con Octave la sucesión obtenida.

Ejercicio 15 Sea $f(x) = x^3 - x - 1$. La ecuación f(x) = 0 tiene una única raíz en el intervalo (1,2). Se consideran las dos siguientes iteraciones del método de punto fijo para aproximar dicha raíz.

$$g(x) = x^3 - 1,$$
 $h(x) = \sqrt[3]{x+1}.$

Determinar cuáles de estas funciones son apropiadas para la iteración, y para aquellas que lo sean:

- 1. Determinar un intervalo inicial I en el cual el método converja.
- 2. Dar un valor inicial $x_0 \in I$ y la cantidad de iteraciones necesarias para aproximar la raíz de f con error menor que 10^{-5} comenzando con el x_0 dado.

Ejercicio 16 Sea $f: \mathbb{R}_{>0} \to \mathbb{R}$ definida como $f(x) = \frac{8x-1}{x} - e^x$.

- 1. Determinar, mediante gráficos convenientes, el número de raíces de f, localizando cada una de ellas entre dos enteros consecutivos.
- 2. Se proponen los siguientes dos métodos de punto fijo:

$$x_{n+1} = \frac{1}{8}(1 + x_n e^{x_n}), \quad x_{n+1} = \ln\left(\frac{8x_n - 1}{x_n}\right)$$

ambos con $x_0 = 1$. Estudiar si estas sucesiones convergen hacia alguna de las raíces de f.

3. Implementar ambos métodos y utilizarlos para estimar las raíces de f.

Ejercicio 17 Sea g una función tal que g' es continua en [s, b], donde s es un punto fijo de g. Si además se verifica que $0 \le g'(x) \le K < 1$ para todo $x \in [s, b]$, mostrar que la iteración, comenzando con $x_0 \in [s, b]$, converge decrecientemente a s.

Ejercicio 18 Sea una función f de clase C^1 en las condiciones del método N-R. Sea $g(x) = x - \frac{f(x)}{f'(x)}$. Mostrar que el método N-R es un método de punto fijo.

Ejercicio 19 Para una función f de clase C^2 que tiene una raíz de orden 2 en r:

- 1. Demostrar que el método N-R converge sólo linealmente a r (Sugerencia: Notar que en este caso la g del ejercicio anterior no está definida para x=r, redefinirla como g(r)=r, probar la diferenciabilidad de g y demostrar que $g'(r)\neq 0$).
- 2. ¿Cuál es el orden de convergencia de la siguiente modificación?

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$

Ejercicio 20 Sea $f(x) = 4x^3 - 3x + 1 = 0$. La ecuación f(x) = 0 tiene una raíz doble. Aproximarla calculando las 10 primeras iteraciones de los métodos N-R y N-R con la modificación del ejercicio 19, comenzando con los valores iniciales $x_1 = y_1 = 25$. Graficar simultáneamente las dos sucesiones obtenidas.

Ejercicio 21 Dada la función $f(x) = x + \frac{1}{x} - 2$, $f: \mathbb{R}_{>0} \to \mathbb{R}$, se construye el siguiente algoritmo para aproximar la raíz r = 1:

$$x_{n+1} = 2 - \frac{1}{x_n}.$$

Verificar que si $x_0 > 1$ entonces la sucesión $\{x_n\}$ es monótona decreciente y acotada inferiormente por 1. Concluir que $x_n \to 1$, aunque esta iteración no está en las hipótesis del teorema del punto fijo. ¿Qué hipótesis no se cumple?

Ejercicio 22 Se quiere resolver la ecuación f(x) = 0, donde $f(x) = e^x - 2$. Calcular los 10 primeros términos de las sucesiones generadas por los métodos N-R y de la secante, comenzando con los valores iniciales $x_1 = 3$ para el primer método e $y_1 = 3$, $y_2 = 2.3$ para el segundo. Graficar simultáneamente las dos sucesiones obtenidas.

Ejercicio 23 Se quiere aplicar el método N-R para dar una tabla de valores de la función y(x) definida implícitamente por la ecuación G(x,y) = 0 en un intervalo [a,b].

El método consiste en comenzar la tabla en un par de valores x_0, y_0 que verifican $x_0 = a$ y $G(x_0, y_0) = 0$ y proceder por incrementos en x hasta llegar al valor $x_N = b$.

En cada paso se obtiene el valor de y_{n+1} aplicando el método N-R a la función $G(x_{n+1}, y)$ donde y es la variable y x_{n+1} permanece fijo; con valor inicial el valor de y_n obtenido en el paso anterior. Dado que la función y(x) se supone continua, esta elección del valor inicial se supone apropiada.

- 1. Aplicar el método para la ecuación $G(x,y) = x^2 + y^2 1 = 0$, comenzando en $x_0 = 0, y_0 = 1$ para valores de x en [0,1]. Graficar junto con la solución que se obtiene de despejar analíticamente y comparar. Utilizar distintos valores para el incremento y para la cantidad de iteraciones del método N-R en cada paso.
- 2. Aplicar el método para $G(x,y) = 3x^7 + 2y^5 x^3 + y^3 3$. Comenzar la tabla en $x_0 = 0, y_0 = 1$ y proceder por incrementos en x de 0.2 hasta llegar a $x_{50} = 10$.