Práctica 7: Espacios Normados

Ejercicio 1. De los espacios métricos vistos hasta ahora, ¿cuáles son normados? ¿Y de Banach?

Ejercicio 2. Sea $(E, \|\cdot\|)$ un espacio normado sobre k $(k = \mathbb{R} \circ \mathbb{C})$. Probar que se verifican:

- i) Las operaciones $+: E \times E \to E \text{ y} \times : k \times E \to E \text{ son continuas}.$
- ii) $\overline{B_r(x)} = \overline{B_r(x)}$ (es decir, la clausura de la bola abierta es la bola cerrada).
- iii) $diam(B_r(x)) = 2r$.

Ejercicio 3. Sea $(E, \|\cdot\|)$ un espacio normado y sea $C \subset E$. Decimos que C es *convexo* si $\forall x, y \in C$ y $\forall t \in [0, 1]$ se tiene que $tx + (1 - t)y \in C$.

- i) Probar que $B_r(x)$ es convexo.
- ii) Probar que si $(C_i)_{i \in I}$ son convexos, entonces $\cap_{i \in I} C_i$ lo es.
- iii) Probar que si C es convexo, entonces C° lo es.
- iv) Probar que si C es convexo, entonces \overline{C} lo es.

Ejercicio 4. Sea $(E, \|\cdot\|)$ un espacio normado y $S \subset E$ un subespacio (vectorial). Probar que:

- i) \overline{S} también es un subespacio.
- ii) Si $S \neq E$, entonces $S^o = \emptyset$.
- iii) Si $dim(S) < \infty$, entonces S es cerrado.

Ejercicio 5. Dado un k-espacio vectorial E, un subespacio (vectorial) $H \subset E$ se dice un hiperplano si existe $x \in E$, $x \neq 0$, tal que $H \oplus \langle x \rangle = E$.

- i) Probar que si H es un hiperplano, entonces para todo $y \in E \setminus H$ se tiene que $H \oplus \langle y \rangle = E$.
- ii) Probar que H es un hiperplano si y sólo si existe $\phi: E \to k$ lineal, $\phi \neq 0$, tal que $H = \text{Nu}(\phi)$.
- iii) Probar que si E es un espacio normado y H es un hiperplano, entonces H es o bien cerrado o bien denso en E.

Ejercicio 6. Sea $(E, \|\cdot\|)$ un espacio normado sobre k $(k = \mathbb{R} \circ \mathbb{C})$ y sea $\phi : E \to k$ un funcional lineal. Probar que ϕ es continuo si y sólo si $\text{Nu}(\phi)$ es cerrado.

Ejercicio 7. Sea $(E, \|\cdot\|)$ un espacio normado de dimensión infinita. Definir una función lineal $\phi: E \to k$ que no sea continua. Deducir que todo espacio normado de dimensión infinita contiene un subespacio (vectorial) propio denso.

Ejercicio 8. Sea $(E, \|\cdot\|)$ un espacio de Banach y $(x_n) \subset E$. Si $\sum_{n=1}^{\infty} \|x_n\|$ converge, entonces $\sum_{n=1}^{\infty} x_n$ converge.

Ejercicio 9. Para cada uno de los siguientes ejemplos de subespacios decidir si son cerrados, si son densos y si son hiperlanos.

- i) $c = \{(x_n)_{n \in \mathbb{N}} : \exists \lim_{n \to \infty} x_n\} \subset \ell_{\infty}.$
- ii) $c_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\} \subset c$.
- iii) $\{x \in \ell_1 : \sum_{n=1}^{\infty} x_n = 0\} \subset \ell_1.$

Ejercicio 10. Sean E y F espacios normados. Sea $T:E\to F$ un operador lineal. Probar que son equivalentes:

- (1) T es continuo en 0;
- (2) $\exists x_0 \in E \text{ tal que } T \text{ es continuo en } x_0;$
- (3) T es continuo;
- (4) T es uniformemente continuo;
- (5) $\exists M > 0 / \forall x \in E : ||Tx|| \le M||x||$ (*T* es *acotada*);
- (6) $\forall A \subset E$ acotado, T(A) es acotado.

Ejercicio 11. Sean $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios normados. Consideramos $L(E, F) = \{T : E \to F/T \text{ es lineal y continua}\}$, y para cada $T \in L(E, F)$ sea

$$||T|| = \sup_{||x||_E \le 1} ||T(x)||_F.$$

Probar que:

- i) $(L(E,F), \|\cdot\|)$ es un espacio normado.
- ii) Si F es de Banach entonces L(E, F) también lo es.

Ejercicio 12. Sean E y F espacios normados y sea $T:E\to F$ un operador lineal y continuo. Verificar las siguientes fórmulas:

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1} \|Tx\| = \sup_{x \ne 0} \frac{\|Tx\|}{\|x\|} = \inf\{M/\|Tx\| \le M\|x\|\}.$$

Ejercicio 13. Sea $k:[0,1]\times[0,1]\to\mathbb{R}$ continua y sea $K:C[0,1]\to C[0,1]$ dada por

$$Kf(x) = \int_0^1 k(x, y) f(y) dy.$$

Probar que K es lineal y continua. Acotar su norma.

Ejercicio 14. En $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_{n\geq 1}/ \exists n_0, \ a_n = 0 \ \forall n \geq n_0\}$ ponemos la norma infinito. Probar que la función $f: \mathbb{R}^{(\mathbb{N})} \to \mathbb{R}$, definida por

$$f((a_n)_{n\geq 1}) = \sum_{n=1}^{\infty} na_n,$$

es lineal pero no continua.

Ejercicio 15. Sean $S, T : \ell_1 \to \ell_1$, definidos por:

$$S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$$

$$T(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots)$$

Probar que $S, T \in L(\ell_1)$ y calcular sus normas.

Ejercicio 16. Sea $T: c \to \mathbb{R}$ dada por $T(a) = \lim_{n \to \infty} a_n$. Probar que T es lineal y continuo y hallar ||T||. (Recordar: c es el conjunto de las sucesiones en \mathbb{R} convergentes).

Ejercicio 17. Sea $\phi \in C[0,1]$ y sea $T_{\phi}: C[0,1] \to \mathbb{R}$ dada por

$$T_{\phi}f = \int_{0}^{1} f(x)\phi(x)dx.$$

Probar que T_{ϕ} es un funcional lineal continuo y que $||T_{\phi}|| = \int_{0}^{1} |\phi(x)| dx$.

Ejercicio 18. Sea $(E, \|\cdot\|)$ un espacio normado de dimensión n y sea $f: \mathbb{R}^n \longrightarrow E$ un isomorfismo algebraico (es decir, una transformación lineal biyectiva). Consideramos en \mathbb{R}^n la norma $||x||_{\infty}$ $\max_{1 \leq i \leq n} |x_i|$.

- i) Probar que $K = \{x \in \mathbb{R}^n : ||x||_{\infty} = 1\}$ es compacto en \mathbb{R}^n .
- ii) Probar que existen $c_1, c_2 > 0$ tales que para todo $x \in \mathbb{R}^n : c_1 ||x||_{\infty} \le ||f(x)||_E \le c_2 ||x||_{\infty}$.
- iii) Deducir que si N_1 , N_2 son dos normas en \mathbb{R}^n , entonces existen constantes a, b > 0 tales que para todo $x \in \mathbb{R}^n : aN_1(x) \leq N_2(x) \leq bN_2(x)$ (esto es: son equivalentes).

Ejercicio 19. Sean E un espacio de Banach y S, T subespacios cerrados, con dim $T < \infty$. Probar que S + T es cerrado.

Ejercicio 20. (Lema de Riesz) Sean E un espacio normado, $S \subset E$ un subespacio vectorial cerrado propio, y $0 < \alpha < 1$.

Probar que existe $x_{\alpha} \in E - S$ tal que $||x_{\alpha}|| = 1$ y $||s - x_{\alpha}|| > \alpha \ \forall s \in S$. Sugerencia: considerar $x \notin S$, r = d(x, S) y $x_{\alpha} = \frac{(x-b)}{||x-b||}$ con $b \in S$ adecuado.

Ejercicio 21. Sean E un espacio normado de dimensión infinita. Probar que existe $(\omega_n)_{n\in\mathbb{N}}\subseteq E$ tal que $\|\omega_n\| = 1$ y $d(\omega_n, \omega_m) > 1/2$, $n \neq m$. Deducir que $B_1(0)$ no es compacta.

Sugerencia: aplicar el lema de Riesz a una sucesión creciente de subespacios de dimensión finita.

Ejercicio 22. Sea E un espacio de Banach de dimensión infinita. Probar que no puede tener una base algebraica numerable.

Sugerencia: si la tuviera se escribiría como unión numerable de subespacios de dimensión finita. Usar el teorema de Baire.