Práctica 2: Cardinalidad

"Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del conjunto M cuando hacemos abstracción de la naturaleza y el orden de sus elementos. Denotamos el resultado de este doble acto de abstracción por $\overline{\overline{M}}$ " GEORG CANTOR, 1895.

Propiedades básicas de los conjuntos

Ejercicio 1. Demostrar las siguientes igualdades de conjuntos:

i)
$$B - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B - A_i)$$
.

ii)
$$B - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (B - A_i).$$

iii)
$$\bigcup_{i \in I} (A_i \cap B) = B \cap \Big(\bigcup_{i \in I} A_i\Big).$$

Ejercicio 2. Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos y sea $A=\bigcup_{n\in\mathbb{N}}A_n$. Hallar una familia de conjuntos $(B_n)_{n\in\mathbb{N}}$ que verifique simultáneamente:

- $B_n \subseteq A_n$ para cada $n \in \mathbb{N}$.
- $B_k \cap B_j = \emptyset$ si $k \neq j$.
- $\bullet \quad A = \bigcup_{n \in \mathbb{N}} B_n.$

Ejercicio 3. Sea $f: X \longrightarrow Y$ una función y sean A y B subconjuntos de X.

- i) Demostrar que:
 - (a) $f(A \cup B) = f(A) \cup f(B)$.
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$.
- ii) Generalizar al caso de uniones e intersecciones infinitas.
- iii) Exhibir un ejemplo donde la inclusión en i)b) sea estricta.

Ejercicio 4. Sean $f: X \longrightarrow Y$ una función, $A \subseteq X$ y $B, B_1, B_2 \subseteq Y$. Demostrar que:

- i) $A \subseteq f^{-1}(f(A))$.
- ii) $f(f^{-1}(B)) \subseteq B$.

- iii) $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.
- iv) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- v) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Generalizar (iv) y (v) al caso de uniones e intersecciones infinitas.

Ejercicio 5. Sea $f: X \longrightarrow Y$ una función. Probar que $f(f^{-1}(B)) = B$ para cada $B \subseteq Y$ si y sólo si f es sobreyectiva.

Ejercicio 6. Sea $f: X \longrightarrow Y$ una función. Probar que las siguientes propiedades son equivalentes:

- (1) f es inyectiva.
- (2) $f(A \cap B) = f(A) \cap f(B)$ para todos $A, B \subseteq X$.
- (3) $f^{-1}(f(A)) = A$ para todo $A \subseteq X$.
- (4) $f(A) \cap f(B) = \emptyset$ para todo par de subconjuntos A, B tales que $A \cap B = \emptyset$.
- (5) $f(A \setminus B) = f(A) \setminus f(B)$ para todos $B \subseteq A \subseteq X$.

Ejercicio 7. Dado un conjunto A y $S \subseteq A$ un subconjunto, se define la función característica de S, $\mathcal{X}_S : A \longrightarrow \{0,1\}$, por

$$\mathcal{X}_S(a) = \begin{cases} 1 & \text{si } a \in S \\ 0 & \text{si } a \notin S \end{cases}.$$

Si $T \subseteq A$ es también un subconjunto, probar que:

- i) $\mathcal{X}_{S\cap T} = \mathcal{X}_S \cdot \mathcal{X}_T$.
- ii) $\mathcal{X}_{A-S} = 1 \mathcal{X}_S$.
- iii) $\mathcal{X}_S + \mathcal{X}_T = \mathcal{X}_{S \cup T} + \mathcal{X}_{S \cap T}$.

Cardinalidad

Ejercicio 8. Demostrar que si A es un conjunto de n elementos, entonces $\mathcal{P}(A)$ tiene 2^n elementos.

Ejercicio 9. Sea A un conjunto. Probar que son equivalentes:

- (1) A tiene un subconjunto en biyección con \mathbb{N} .
- (2) Para todo $x \in A$, existe una función $f_x : A \to A \setminus \{x\}$ biyectiva.
- (3) Para todo $\{x_1,\ldots,x_n\}\subseteq A$, existe una función $f_{\{x_1,\ldots,x_n\}}:A\to A\setminus\{x_1,\ldots,x_n\}$ biyectiva.

Ejercicio 10. Sea A un conjunto numerable. Supongamos que existe una función sobreyectiva de A en un conjunto B. Probar que B es a lo sumo numerable.

Ejercicio 11. Probar que los siguientes conjuntos son numerables (es decir, tienen cardinal \aleph_0):

$$\mathbb{Z}_{\leq -1}$$
 ; $\mathbb{Z}_{\geq -3}$; $3.\mathbb{N}$; \mathbb{Z} ; \mathbb{N}^2 ; $\mathbb{Z} \times \mathbb{N}$; \mathbb{Q} ; \mathbb{N}^m $(m \in \mathbb{N})$

Ejercicio 12.

- i) Sean A y B conjuntos a lo sumo numerables. Probar que $A \cup B$ es a lo sumo numerable.
- ii) Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos numerables. Probar que $\bigcup_{n\in\mathbb{N}} A_n$ es numerable.
- iii) Sea A un conjunto finito y $S=\bigcup_{m\in\mathbb{N}}A^m.$ Probar que $\#(\mathcal{S})=\aleph_0.$

Deducir que, cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos. ¿Cuántos subconjuntos de \mathbb{N}^2 pueden ser definidos en un lenguaje fijo? ¿Cuántos hay en total?

Ejercicio 13. Sean A y B conjuntos disjuntos, A infinito y B numerable. Probar que:

- i) Existe una biyección entre $A \cup B$ y A.
- ii) Si A no es numerable y $B\subseteq A$, entonces existe una biyección entre A-B y A. ¿Es numerable el conjunto $\mathbb{R}-\mathbb{Q}$?

Ejercicio 14. Probar que $\mathbb{Q}[X]$, el conjunto de todos los polinomios con coeficientes racionales, es numerable.

Ejercicio 15. Se dice que un número complejo z es algebraico si existen enteros a_0, \ldots, a_n no todos nulos, tales que

$$a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n = 0$$

- i) Demostrar que el conjunto de todos los números algebraicos es numerable.
- ii) Deducir que existen números reales que no son algebraicos.

Nota: Estos números se llaman trascendentes.

iii) Probar que, más aún, existen tantos números trascendentes como números reales.

Ejercicio 16. Sea $X \subseteq \mathbb{R}_{>0}$ un conjunto de números reales positivos. Supongamos que existe una constante positiva C tal que para cualquier subconjunto finito $\{x_1, \ldots, x_n\} \subseteq X$ vale que $\sum_{i=1}^n x_i \leq C$. Probar que X es a lo sumo numerable.

Ejercicio 17. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función monótona. Probar que:

$$\#(\{x \in \mathbb{R} \mid f \text{ no es continua en } x\}) \leq \aleph_0.$$

Ejercicio 18. Probar que si A es un conjunto numerable, el conjunto de las partes finitas de A (es decir, el subconjunto de $\mathcal{P}(A)$ formado por los subconjuntos finitos de A) es numerable.

Ejercicio 19. Sean a, b, c cardinales. Probar que:

i)
$$a.(b+c) = a.b + a.c$$

ii)
$$a^{b+c} = a^b$$
. a^c

iii)
$$(a^b)^c = a^{bc}$$

iv)
$$(ab)^c = a^c \cdot b^c$$

v) Si
$$b \le c$$
, entonces $a^b \le a^c$ y $b^a \le c^a$.

Ejercicio 20. Hallar el cardinal de los siguientes conjuntos de sucesiones:

i)
$$\{(a_n) / a_n \in \mathbb{N} \text{ para todo } n \in \mathbb{N}\}.$$

ii)
$$\{(a_n) \subseteq \mathbb{N} / a_n \le a_{n+1} \text{ para todo } n \in \mathbb{N}\}.$$

iii)
$$\{(a_n) \subseteq \mathbb{N} / a_n \ge a_{n+1} \text{ para todo } n \in \mathbb{N}\}.$$

iv)
$$\{(q_n) \subseteq \mathbb{Q} / \lim_{n \to \infty} q_n = 0\}.$$

v)
$$\{(q_n) \subseteq \mathbb{Q} / (q_n) \text{ es periódica} \}$$
.

vi) Dado
$$m \in \mathbb{N}$$
, $\{(a_n) \subseteq \mathbb{N} \ / \ 1 \le a_n \le m \text{ para todo } n \in \mathbb{N}\}.$

Ejercicio 21. Hallar el cardinal de los siguientes conjuntos:

i)
$$\{I \ / \ I$$
 es un intervalo de extremos racionales $\}$.

ii)
$$\{[a,b] / a, b \in \mathbb{R}\}.$$

iii)
$$I$$
 , sabiendo que $\{A_i\}_{i\in I}\subseteq \mathbb{R}$ es una familia de intervalos disjuntos.

iv)
$$\{(x,y) \in \mathbb{R}^2 / 3x + 2y \ge 7\}.$$

v)
$$\mathbb{R}_{>0}$$
.

Ejercicio 22. Probar que la unión numerable de conjuntos de cardinal c tiene cardinal c.

Ejercicio 23. Probar que $n^{\aleph_0} = \aleph_0^{\aleph_0} = c^{\aleph_0} = c$ cualquiera sea $n \in \mathbb{N}_{\geq 2}$.

Ejercicio 24. Mostrar que \mathbb{R} se puede escribir como unión disjunta de c conjuntos de cardinal c.

Ejercicio 25. Se consideran los siguientes conjuntos de funciones:

$$\begin{array}{llll} \mathcal{F}(\mathbb{R}) & = & \{f \ / \ f : \mathbb{R} \longrightarrow \mathbb{R} \} \\ \mathcal{C}(\mathbb{R}) & = & \{f \in \mathcal{F}(\mathbb{R}) \ / \ f \text{ es continua} \} \end{array} & \qquad \qquad \\ \mathcal{F}(\mathbb{Q}) & = & \{f \ / \ f : \mathbb{Q} \longrightarrow \mathbb{R} \} \\ \mathcal{C}(\mathbb{Q}) & = & \{f \in \mathcal{F}(\mathbb{Q}) \ / \ f \text{ es continua} \} \end{array}$$

- i) Probar que $\#(\mathcal{F}(\mathbb{R})) > c$.
- ii) Calcular $\#(\mathcal{F}(\mathbb{Q}))$.
- iii) Calcular $\#(\mathcal{C}(\mathbb{Q}))$.
- iv) Probar que la función $\phi: \mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{Q})$ dada por $\phi(f) = f|_{\mathbb{Q}}$ es inyectiva. ¿Qué significa esto?
- v) Calcular $\#(\mathcal{C}(\mathbb{R}))$.

Ejercicio 26. Probar que el conjunto de partes numerables de \mathbb{R} (es decir, el subconjunto de $\mathcal{P}(\mathbb{R})$ formado por todos los subconjuntos numerables de \mathbb{R}) tiene cardinal c.

Axioma de Elección y Lema de Zorn

"El Axioma de Elección es obviamente verdadero, el Principio de Buena Ordenación es obviamente falso, y ¿Quién puede decir algo sobre el Lema de Zorn?" JERRY BONA

Ejercicio 27. Probar que una cadena (conjunto totalmente ordenado) infinita contiene o bien una cadena isomorfa (con el orden) a \mathbb{N} o bien una cadena isomorfa a $\mathbb{Z}_{\leq -1}$.

Ejercicio 28. Probar que existe una aplicación sobreyectiva $f:A\to B$ si y sólo si existe $g:B\to A$ inyectiva.

Ejercicio 29. Sean A y B dos conjuntos. Entonces, o bien existe $f:A\to B$ inyectiva, o bien existe $g:B\to A$ inyectiva.

Ejercicio 30. Probar que en un espacio vectorial todo conjunto linealmente independiente se puede extender a una base.