ÁLGEBRA LINEAL (MAESTRÍA EN ESTADÍSTICA)

Práctica 4 - Determinantes

Año 2015

1. Calcular el determinante de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
. (b) $\begin{pmatrix} 6 & 5 \\ \frac{3}{5} & \frac{1}{2} \end{pmatrix}$. (c) $\begin{pmatrix} -2 & 3 & 1 \\ 4 & 6 & 5 \\ 0 & 2 & 1 \end{pmatrix}$. (d) $\begin{pmatrix} -2 & 1 & 1 \\ 4 & -2 & 4 \\ 2 & -1 & 5 \end{pmatrix}$.

2. Hallar, usando triangulación,

$$\det \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \end{array} \right)$$

3. Sea $A \in \mathbb{R}^{10 \times 10}$ con $\det(A) = 8$. Calcular $\det(3A)$, $\det(-A)$ y $\det(-2A^{-1})$.

4. Si $A y A^{-1}$ tienen sus coeficientes enteros, ¿por qué ambos determinantes deben dar 1 ó -1?

5. Demostrar, sin calcular, que los determinantes de las siguientes matrices son nulos.

$$\begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 3 & 1 & -4 \end{pmatrix} \quad , \quad \begin{pmatrix} x & y & 2x+3y \\ 4 & 3 & 17 \\ z & t & 2z+3t \end{pmatrix} \quad , \quad \begin{pmatrix} sen^2a & 1 & cos^2a \\ sen^2b & 1 & cos^2b \\ sen^2c & 1 & cos^2c \end{pmatrix}$$

6. Calcular el rango de las matrices del ejercicio anterior.

7. Hallar todos los $k \in \mathbb{R}$ para los que A es inversible en cada uno de las siguientes casos:

(a)
$$\begin{pmatrix} 5 & 3 \\ k & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & k \\ k & -2 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 1 & k \\ 0 & 0 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 2 & k \\ k & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & 0 & 0 & 3 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 3 & 1 & -1 & k \end{pmatrix}$

1

8. (a) Sea $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$. Probar que A es una matriz ortogonal y calcular $\det(A)$.

(b) Interpretar geométricamente dado un vector v el resultado de hacer Av.

(c) ¿Cuánto vale el determinante de una matriz ortogonal? ¿Cuál es el rango?

9. Hallar $A \in \mathbb{R}^{3\times 3}$ ortogonal con $\det(A) = -1$.

10. Regla de Cramer en 2×2 :

Sea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ con $\det(A) = ad - bc \neq 0$. Probar que la solución del sistema

$$A\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

es (x_1, x_2) con

$$x_1 = \frac{\det \begin{pmatrix} b_1 & b \\ b_2 & d \end{pmatrix}}{\det(A)}$$
 y $x_2 = \frac{\det \begin{pmatrix} a & b_1 \\ c & b_2 \end{pmatrix}}{\det(A)}$.

11. Encontrar un ejemplo de 4×4 en el que

$$\det \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \neq \det(A).\det(D) - \det(B).\det(C)$$

donde A, B, C, D son matrices de 2×2 .

12. Sea $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix}$.

¿Para qué valores de x_1, \ldots, x_n el rango de A es, respectivamente, 0, 1, 2, 3?

13. • Calcular el rango de $A \in \mathbb{R}^{3 \times 3}$ con

$$A = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} . \begin{pmatrix} -1 & 0 & 3 \end{pmatrix}$$

¿Cuánto vale el determinante de A?

• Si $A=\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right)$. (y_1 y_2 y_3) con $x,y\in\mathbb{R}^3$ no nulos, ¿cuál es el rango de A?