Álgebra I Práctica 5 - Polinomios

Números complejos

1. Para los siguientes $z \in \mathbb{C}$, hallar Re(z), Im(z), |z|, $\text{Re}(z^{-1})$, $\text{Im}(z^{-1})$, $\text{Re}(-i \cdot z)$ e $\text{Im}(i \cdot z)$.

i)
$$z = (2+i)(1+3i)$$
.

iv)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$
.

$$\begin{array}{ll} \text{i)} \ \ z=(2+i)(1+3\,i). & \text{iv)} \ \ z=i^{17}+\frac{1}{2}\,i(1-i)^3. & \text{vi)} \ \ z=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\,i\right)^{-1}. \\ \text{iii)} \ \ z=(\sqrt{2}+\sqrt{3}\,i)^2(\overline{1-3\,i}). & \text{v)} \ \ z=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\,i\right)^{179}. & \text{vii)} \ \ z=\overline{1-3\,i}^{-1}. \end{array}$$

ii)
$$z = 5i(1+i)^4$$

iii)
$$z = (\sqrt{2} + \sqrt{3}i)^2 (\overline{1 - 3i}).$$

v)
$$z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{17}$$

vii)
$$z = \overline{1 - 3i}^{-1}$$
.

2. Dados z = 1 + 3i y w = 4 + 2i, representar en el plano complejo los siguientes números

$$\mathbf{v}) -z$$
.

ix)
$$\overline{z}$$
.

xiii)
$$|2z|$$
.

ii)
$$w$$
.

x)
$$\overline{3z+2w}$$
.

xiii)
$$|2z|$$
.
xiv) $|z+w|$.

iii)
$$z + w$$

iii)
$$z + w$$
. vii) $\frac{1}{2}w$.

xi)
$$\overline{iz}$$
.

$$xv) |z-w|.$$

iv)
$$z - w$$
.

viii)
$$iz$$
.

xii)
$$|z|$$
.

xvi)
$$|\overline{w-z}|$$
.

3. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} / 3 \operatorname{Re}(z) - 1 = 2 \operatorname{Im}(z) \}$$

i)
$$\{z \in \mathbb{C} / 3 \operatorname{Re}(z) - 1 = 2 \operatorname{Im}(z)\}$$
 ii) $\{z \in \mathbb{C} / -1 \le \operatorname{Re}(z) \le 1 \text{ y } |z| \le 2\}$

iii)
$$\{z \in \mathbb{C} / 2 \le |z - 1 + i| \le 3\}$$

iii)
$$\{z\in\mathbb{C}\,/\,2\leq|z-1+i|\leq3\}$$
 iv) $\{z\in\mathbb{C}\,/\,z.\operatorname{Im}(z).(1-i)=|z|^2\}$

v)
$$\{z \in \mathbb{C} / |z - 2| = |z - 1 - i|\}$$

4. Probar que

$$\frac{1}{2}$$

$$z = \overline{z} \iff z \in \mathbb{R}$$

$$\mathrm{i)} \quad \overline{z+w} = \overline{z} + \overline{w} \quad \forall z, w \in \mathbb{C} \quad \mathrm{v)} \quad z = \overline{z} \quad \Longleftrightarrow z \in \mathbb{R} \\ \qquad \qquad \mathrm{ix)} \quad |z+w| \leq |z| + |w| \quad \forall z, w \in \mathbb{C}$$

ii)
$$\overline{z} \, \overline{w} = \overline{z} \, \overline{w} \quad \forall z \, w \in \mathbb{C}$$

vi)
$$z.\overline{z} = |z|^2 \quad \forall z \in \mathbb{C}$$

$$\text{ii)} \quad \overline{z.w} = \overline{z}.\overline{w} \quad \forall z, w \in \mathbb{C} \qquad \qquad \text{vi)} \quad z.\overline{z} = |z|^2 \quad \forall z \in \mathbb{C} \qquad \qquad \text{x)} \quad ||z| - |w|| \leq |z - w| \quad \forall z, w \in \mathbb{C}$$

iii)
$$\overline{\overline{z}} = z \quad \forall z \in \mathbb{C}$$

vii)
$$|z.w| = |z|.|w| \quad \forall z, w \in \mathbb{C} \quad \text{xi)} \quad |\operatorname{Re}(z)| \le |z| \quad \forall z \in \mathbb{C}$$

$$|\operatorname{Pe}(z)| < |z| \quad \forall z \in \mathbb{C}$$

iv)
$$\overline{z^{-1}} = \overline{z}^{-1} \quad \forall z \in \mathbb{C}$$

viii)
$$|z^{-1}| = |z|^{-1} \quad \forall z \in \mathbb{C}$$

$$\text{iv)} \quad \overline{z^{-1}} = \overline{z}^{\,-1} \quad \forall z \in \mathbb{C} \qquad \qquad \text{viii)} \quad |z^{-1}| = |z|^{\,-1} \quad \forall z \in \mathbb{C} \qquad \quad \text{xii)} \quad |\operatorname{Im}(z)| \leq |z| \quad \forall z \in \mathbb{C}$$

5. Hallar todos los $z \in \mathbb{C}$ que satisfacen

i)
$$z \neq 0$$
 y $z = \overline{z}^{-1}$

v)
$$z^2 + |z^2| = i.\overline{z}$$

iv)
$$z \neq 0$$
 v $z = 1 = z^{-1}$

ii)
$$Re(z^2) = 0$$

vi)
$$|z - \overline{z}| = \text{Re}(z)$$

$$x) z^2 + (1+2i)z + 2i = 0$$

vii)
$$i(z^2 + 4) = z$$
. Im

1

$$\begin{array}{llll} {\rm ii)} & z \neq 0 \; {\rm y} \; z = \overline{z}^{\,-1} & {\rm v)} & z^2 + |z^2| = i.\overline{z} & {\rm ix)} & z \neq 0 \; {\rm y} \; z - 1 = z^{-1} \\ {\rm ii)} & {\rm Re}(z^2) = 0 & {\rm vi)} & |z - \overline{z}| = {\rm Re}(z) & {\rm x)} & z^2 + (1+2i)z + 2i = 0 \\ {\rm iii)} & z \neq 0 \; {\rm y} \; z + z^{-1} \in \mathbb{R} & {\rm vii)} & i(z^2 + 4) = z. \, {\rm Im}(z) \\ {\rm iv)} & |z|^2 = (z + \overline{z}). \, {\rm Im}(z) & {\rm viii)} & z^2 = 3 + 4i \end{array}$$

viii)
$$z^2 = 3 + 4$$

6. Calcular las raíces cuadradas de los siguientes números complejos z

i)
$$z = -36$$

ii)
$$z=i$$

iii)
$$z = -3 - 4z$$

iii)
$$z = -3 - 4i$$
 iv) $z = -15 + 8i$

7. Calcular los módulos y los argumentos de los siguientes números complejos

i)
$$3 + \sqrt{3}i$$
.

iii)
$$(-1-i)^{-1}$$
.

v)
$$(-1+\sqrt{3}i)^{-5}$$
.

ii)
$$(2+2i)(\sqrt{3}-i)$$
. iv) $(-1+\sqrt{3}i)^5$.

iv)
$$(-1 + \sqrt{3}i)^5$$
.

vi)
$$\frac{1+\sqrt{3}i}{1-i}$$
.

8. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} - \{0\} / |z| \ge 2 \text{ y } \frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3} \}.$$

ii)
$$\{z \in \mathbb{C} - \{0\} / \arg(-iz) > \frac{\pi}{4}\}.$$

iii)
$$\{z \in \mathbb{C} - \{0\} / |z| < 3 \text{ y } \arg(z^4) \le \pi\}.$$

- i) Determinar la forma binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
 - ii) Determinar la forma binomial de $(-1+\sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.
 - iii) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} i)^n = 2^{n-1}(-1 + \sqrt{3}i)$.
- 10. Hallar en cada caso las raíces n-avas de $z \in \mathbb{C}$:

i)
$$z = 8, n = 6$$

iv)
$$z = 2i(\sqrt{2} - \sqrt{6}i)^{-1}, n = 11$$

ii)
$$z = -4, \ n = 3$$

v)
$$z = (2 - 2i)^{12}$$
, $n = 6$

iii)
$$z = -1 + i$$
, $n = 7$

vi)
$$z = 1, n = 8.$$

- i) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$. 11.
 - ii) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
 - iii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.
 - iv) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$.
- 12. Probar que $\prod_{\omega \in G_n} \omega = (-1)^{n-1}, \, \forall \, n \in \mathbb{N}.$
- 13. Determinar las raíces n-ésimas primitivas de la unidad para n=2,3,4,5,6 y 12.
- 14. Sea w una raíz quinceava primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$\sum_{i=0}^{n-1} w^{5i} = 0$$
.

ii)
$$\sum_{i=2}^{n-1} w^{3i} = 0.$$

- 15. Dado un número primo p, probar que:
 - i) la suma de las raíces p-ésimas primitivas de la unidad es -1.
 - ii) la suma de las raíces p^2 -ésimas primitivas de la unidad es 0.
 - iii) Si q es un número primo distinto de p, entonces la suma de las raíces pq-ésimas primitivas de la unidad es 1.
 - iv) ¿Cuánto da la suma de las raíces n-ésimas primitivas de la unidad si n es un producto de primos distintos?

- 16. Sea $m \in \mathbb{Z}$ un entero par y $\omega \in \mathbb{C}$ una raíz primitiva 2m-ésima de la unidad. Probar que $(\omega 1)^m$ es imaginario puro.
- 17. Sea $\omega_{23} \in \mathbb{C}$ una raíz primitiva de la unidad de orden 23. Hallar la parte real de $\sum_{k=1}^{11} \omega_{23}^{k^2}$.
- **18.** Probar que si $w \in G_7$ entonces $Re((w^{31} + 1)(w^{18} 1)) = 0$.
- 19. Sea w una raíz cúbica primitiva de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida por

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}, \ \forall n \in \mathbb{N}.$

Probar que z_n es una raíz sexta primitiva de la unidad para todo $n\in\mathbb{N}$

- **20**. Probar que $w \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si y solo si \overline{w} lo es.
- **21**. Sea w una raíz novena primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que $w^{5n} = w^3$.
- **22**. Sea $w \in G_{35}$ una raíz 35-ava primitiva de la unidad. Hallar todos los $n \in \mathbb{Z}$ tales que

$$\begin{cases} w^{15n} &= w^5 \\ w^{14n} &= w^{21} \end{cases}$$

23. Sea G_{20} el conjunto de raíces 20-avas de la unidad y G_4 el conjunto de raíces cuartas de la unidad. Sea \sim la relación en G_{20} definida por

$$a \sim b \iff a = \omega b$$
, para algún $\omega \in G_4$,

o sea dos elementos están relacionados si uno es un múltiplo del otro por una raíz cuarta de la unidad.

- i) Probar que \sim es una relación de equivalencia.
- ii) ¿Cuántas clases de equivalencia hay en total?
- 24. Probar que no es posible hallar tres puntos del plano con coordenadas enteras que sean los vértices de un triángulo equilátero.
- 25. Sobre los lados del cuadrilátero ABCD se dibujan exteriormente los cuadrados BAB_1A_2 , CBC_1B_2 , DCD_1C_2 y ADA_1D_2 de centros O_{AB} , O_{BC} , O_{CD} y O_{DA} respectivamente. Probar que los segmentos $O_{AB}O_{CD}$ y $O_{BC}O_{DA}$ son perpendiculares y de la misma longitud.
- **26**. i) Sea $\omega \in G_k$ una raíz k-ésima primitiva de la unidad. Hallar $\sum_{i=0}^{k-1} \omega^{in}$ en función de n.

ii) Hallar
$$\sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k}$$
.

- * 27. Sea $n \ge 1$. Probar que $1 + 2\sum_{k=1}^{n} \cos(kx) = \frac{\sin((n + \frac{1}{2})x)}{\sin(\frac{x}{2})}$.
- * **28**. Se define $D_0(x) = 1$ y para $n \ge 1$, $D_n(x) = 1 + 2\sum_{k=1}^n \cos(kx)$. Probar que $\sum_{k=0}^{n-1} D_k(x) = \left(\frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)}\right)^2$.

3

Polinomios: generalidades.

- **29**. Calcular el grado y el coeficiente principal de $f \in \mathbb{Q}[X]$ en los casos
 - i) $f = (4X^6 2X^5 + 3X^2 2X + 7)^{77}$.
 - ii) $f = (-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$.
 - iii) $f = (-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$.
- **30**. Calcular el coeficiente de X^{20} de f en los casos
 - i) $f = (X^{18} + X^{16} + 1)(X^5 + X^4 + X^3 + X^2 + X + 1)$ en $\mathbb{Q}[X]$ y en $(\mathbb{Z}/2\mathbb{Z})[X]$.
 - ii) $f = (X 3i)^{133}$ en $\mathbb{C}[X]$.
 - iii) $f = (X-1)^4(X+5)^{19} + X^{33} 5X^{20} + 7$ en $\mathbb{Q}[X]$.
 - iv) $f = X^{10}(X^5 + 4)^7$ en $(\mathbb{Z}/5\mathbb{Z})[X]$.
- **31**. Hallar, cuando existan, todos los $f \in \mathbb{C}[X]$ tales que
 - i) $f^2 = Xf + X + 1$.

iii) $(X+1)f^2 = X^3 + Xf$.

ii) $f^2 - Xf = -X^2 + 1$.

- iv) $f \neq 0$ v $f^3 = gr(f) \cdot X^2 f$.
- **32**. Hallar el cociente y el resto de la división de f por q en los casos
 - i) $f = 5X^4 + 2X^3 X + 4$, $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - ii) $f = 8X^4 + 6X^3 2X^2 + 14X 4$, $g = 2X^3 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - iii) $f = 4X^4 + X^3 4$, $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - iv) $f = X^5 + X^3 + X + 1$, $g = 2X^2 + 1$ en $(\mathbb{Z}/3\mathbb{Z})[X]$.
 - v) $f = X^n 1$, g = X 1 en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$.
- **33**. Determinar todos los $a \in \mathbb{C}$ tales que
 - i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$.
 - ii) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.
 - iii) El resto de la división de $X^5 3X^3 X^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.
- **34**. Definición: Sea K un cuerpo y sea $h \in K[X]$ un polinomio no nulo. Dados $f, g \in K[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g \pmod{h}$. Probar que
 - i) $\equiv \pmod{h}$ es una relación de equivalencia en K[X].
 - ii) Si $f_1 \equiv g_1 \pmod{h}$ y $f_2 \equiv g_2 \pmod{h}$ entonces $f_1 + f_2 \equiv g_1 + g_2 \pmod{h}$ y $f_1 \cdot f_2 \equiv g_1 \cdot g_2 \pmod{h}$.
 - iii) Si $f \equiv g \pmod{h}$ entonces $f^n \equiv g^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - iv) r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 ó gr(r) < gr(h).
 - v) ¿Qué se obtiene al trabajar con los polinomios de $\mathbb{R}[X]$ módulo X^2+1 ?
- **35**. Hallar el resto de la división de f por h para
 - i) $f = X^{353} X 1$ y $h = X^{31} 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - ii) $f = X^{1000} + X^{40} + X^{20} + 1$, $h = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$.
 - iii) $f = X^{200} 3X^{101} + 2$, $h = X^{100} X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- **36**. Sea $n \in \mathbb{N}$, sea $a \in K$. Probar que en K[X] vale:
 - i) $X-a \mid X^n-a^n$.
 - ii) Si n es impar entonces $X + a \mid X^n + a^n$.
 - iii) Si n par entonces $X + a \mid X^n a^n$.

Calcular los cocientes en cada caso.

37. Calcular el máximo común divisor entre f y g y escribirlo como combinación lineal de f y g siendo

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$.

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$.

iii)
$$f = X^5 + X^4 - X^3 + 2X - 3$$
, $g = X^4 + 2X + 1$.

38. Sea
$$X^{(n)} := X(X-1)(X-2)\dots(X-n+1) = \prod_{i=0}^{n-1} (X-i) \in \mathbb{Z}[X].$$

Para cada polinomio P(X) se definen $\Delta P(X) := P(X+1) - P(X)$.

Probar que

i)
$$\Delta X^{(n)} = nX^{(n-1)}$$
.

iii)
$$\Delta^k P(X) = 0$$
 para todo $k > gr(P)$.

ii)
$$\sum_{i=0}^{k-1} i^{(n)} = \frac{k^{(n+1)}}{n+1}.$$

iv)
$$P(X) = \sum_{k>0} \frac{\Delta^k P(0)}{k!} X^{(k)}$$
.

39. Sean p un primo, m, n naturales tales que m = ap + r y n = bp + s con r, s los restos en la división por p. Probar que

$$\binom{m}{n} \equiv \binom{a}{b} \binom{r}{s} \; (\bmod \, p).$$

Sugerencia: Expandir $(X+1)^m = ((X+1)^p)^a (X+1)^r$ en $(\mathbb{Z}/p\mathbb{Z})[X]$.

- **40.** Sea t una raíz cúbica de 2. Dados $a, b, c \in \mathbb{Q}$ números racionales no todos nulos, sea $x = a + bt + ct^2 \in \mathbb{C}$. Demostrar que existen d, e, f racionales tales que $y = d + et + ft^2$ cumple xy = 1.
- * 41. Hallar en función de $n \in \mathbb{N}$ el producto de las longitudes de las diagonales de un polígono regular de n lados inscripto en una circunferencia de radio 1.

* **42**. Sea
$$n \ge 2$$
. Probar que $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$.

- * 43. (Números de Stirling de segunda especie) Sea S(n,k) el número de particiones de un conjunto de n elementos con exactamente k partes.
 - i) Probar que $X^n = \sum_{k=0}^n S(n,k)X^{(k)}$ donde los polinomios $X^{(k)}$ son los del ejercicio 38.

Sugerencia: contar funciones $f:\{1,\ldots,n\}\to\{1,\ldots,x\}$ con $x\in\mathbb{N}.$

ii) Hallar
$$P(X) \in \mathbb{Q}[X]$$
 de grado 8 tal que $\sum_{i=0}^{n} i^7 = P(n), \quad \forall n \in \mathbb{N}.$

* 44. Sea $P \in \mathbb{C}[X]$ un polinomio de grado $n \in \mathbb{N}$ tal que $P(0), P(1), \dots, P(n-1)$ y P(n) son números enteros. Probar que $P(m) \in \mathbb{Z}$ para todo entero m y que $n!P(X) \in \mathbb{Z}[X]$.

Sugerencia: Ejercicio 38, item (iv).

- * 45. (Polinomios de Tchebychev) Sea $\{T_n(x)\}_{n\geq 0}$ la sucesión de polinomios definida recursivamente por $T_0(x) = 1$, $T_1(x) = x$ y $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.
 - i) Probar que $T_n(\cos(x)) = \cos(nx), \forall x \in \mathbb{R}$.
 - ii) Probar que $T_n(x) = \frac{(x \sqrt{x^2 1})^n + (x + \sqrt{x^2 1})^n}{2}$.
 - iii) Se define la sucesión de polinomios $U_n(x) := \frac{1}{n+1} T'_{n+1}(x)$ Probar que $T_n(x)^2 - (x^2 - 1)U_{n-1}(x)^2 = 1$.
- i) Hallar, para todo $n \in \mathbb{Z}$, un polinomio $\widetilde{T}_n \in \mathbb{Z}[X]$ mónico tal que $\widetilde{T}_n(2\cos(x)) = 2\cos(nx), \forall x \in \mathbb{R}$. * **46**.
 - ii) Sea $q \in \mathbb{Q}$ tal que $\cos(q\pi) \in \mathbb{Q}$. Probar que $\cos(q\pi) \in \{0, \pm 1, \pm \frac{1}{2}\}$.

Polinomios: evaluación y raíces.

- 47. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por
- **48**. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n 5X^2 + 2X + 1$ por $X^3 X$.
- i) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 3 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
 - ii) Hallar todos los $f \in \mathbb{Z}[X]$ de grado 3 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
 - iii) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 4 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
- **50**. Sean a, b y c las raíces complejas de $2X^3 3X^2 + 4X + 1$.
 - i) Hallar

(a)
$$a + b + c$$

(e)
$$a^3 + b^3 + c^3$$

(h)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$$

(b)
$$ab + ac + b$$

(f)
$$a^4 + b^4 + a^4$$

(g)
$$a^2b^2 + a^2c^2 + b^2c^2$$

(a)
$$a+b+c$$
,
(b) $ab+ac+bc$,
(c) abc ,
(d) $a^2+b^2+c^2$,
(e) $a^3+b^3+c^3$,
(f) $a^4+b^4+c^4$,
(g) $a^2b^2+a^2c^2+b^2c^2$,
(h) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$,
(i) $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$.

- ii) Encontrar un polinomio de grado 3 cuyas raíces sean a + b, a + c y b + c.
- **51**. Evaluación de polinomios: Sea $f = a_n x^n + \cdots + a_0 \in K[X]$. Queremos calcular la cantidad de sumas y productos necesarios para calcular $f(\alpha)$, $\alpha \in K$, por medio de los siguientes algoritmos:
 - i) Algoritmo ingenuo: Se calculan todos los α^k recursivamente, guardando todos los resultados, luego se multiplica cada uno por su coeficiente a_k y se suma. ¿Cuántas sumas y cuántos productos se utilizaron?
 - ii) Método de Horner (por el matemático inglés William George Horner, 1786-1837, aunque también era conocido por el matemático italiano Paolo Ruffini, 1765-1822, y mucho antes en realidad por el matemático chino Qin Jiushao, 1202-1261). Es el algoritmo que describe el mecanismo siguiente:

$$n = 2$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha a_2)$

$$n = 3$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha a_3))$

$$n = 4$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \alpha a_4)))$

Y en general

$$f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \dots + \alpha(a_{n-2} + \alpha(a_{n-1} + \alpha a_n)) \dots))).$$

¿Cuántas sumas y cuántos productos se utilizaron?

52. (Polinomio interpolador de Lagrange) Sea $n \in \mathbb{N}$ y sean $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n \in \mathbb{C}$ tales que $a_i \neq a_k$ si $j \neq k$. Probar que

$$f = \sum_{k=0}^{n} b_k \left(\prod_{\substack{0 \le j \le n \\ j \ne k}} \frac{X - a_j}{a_k - a_j} \right)$$

es el único polinomio en $\mathbb{C}[X]$ que es nulo o de grado menor o igual que n y que satisface $f(a_k) = b_k$ para todo $0 \le k \le n$

- **53**. Hallar $f \in \mathbb{Q}[X]$ de grado mínimo tal que
 - i) f(1) = 3, $f(0) = \frac{1}{4}$, $f(\frac{1}{2}) = 3$ y f(-1) = 1. ii) f(2) = 0, $f(-3) = \frac{1}{2}$, f(3) = -1 y f(-2) = 1.
- **54**. i) Sea $f \in \mathbb{Z}[X]$ y sean $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$. Probar que si $a \equiv b \pmod{m}$ entonces $f(a) \equiv f(b) \pmod{m}$.
 - ii) Probar que no existe $f \in \mathbb{Z}[X]$ tal que f(3) = 4 y f(-2) = 7.
- **55.** Sea $f \in \mathbb{Z}[X]$ tal que f(a) = f(b) = f(c) = f(d) = 7 con a, b, c, d enteros distintos. Probar que $f(m) \neq 14$ para todo $m \in \mathbb{Z}$.
- **56**. Hallar todos los $f \in \mathbb{Z}[X]$ tales que
 - i) f es mónico de grado 3 y $f(\sqrt{2}) = 5$.
- ii) f es mónico de grado 3 y f(1) = -f(-1).
- 57. Hallar las raíces en $\mathbb C$ y factorizar en $\mathbb C[X]$ los polinomios cuadráticos

i)
$$X^2 - 2X + 10 = 0$$
.

iii)
$$X^2 + (1+2i)X + 2i = 0$$
.

ii)
$$X^2 = 3 + 4i$$
.

iv)
$$X^2 + (3+2i)X + 5 + i = 0$$
.

58. Hallar las raíces en \mathbb{Q} y factorizar en $\mathbb{Q}[X]$ los polinomios cuadráticos

i)
$$X^2 + 6X - 1 = 0$$
.

ii)
$$X^2 + X - 6 = 0$$
.

59. Hallar las raíces en $\mathbb{Z}/7\mathbb{Z}$ y factorizar en $(\mathbb{Z}/7\mathbb{Z})[X]$ los polinomios cuadráticos

i)
$$X^2 + 6X + 1 = 0$$
.

ii)
$$X^2 + X + 6 = 0$$
.

- **60**. Hallar la forma binomial de cada una de las raíces complejas del polinomio $X^6 + X^3 2$.
- **61**. Sea $\omega = e^{\frac{2\pi}{7}i}$. Probar que $\omega + \omega^2 + \omega^4$ es raíz del polinomio $X^2 + X + 2$.
- **62**. i) Sean $f,g\in\mathbb{C}[X]$ y sea $a\in\mathbb{C}$. Probar que a es raíz de f y de g si y sólo si a es raíz de (f:g).
 - ii) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz común con $X^4 + 3X^3 3X + 1$.
- **63**. Hallar todos los $f \in \mathbb{C}[X]$ tales que $X^3 f' = f^2$.

- **64**. Determinar la multiplicidad de a como raíz de f en los casos
 - i) $f = X^5 2X^3 + X$, a = 1.
- iv) $f = (X-2)^2(X^2-4) (X-2)(X+7)$, a = 2.
- ii) $f = 4X^4 + 5X^2 7X + 2$, $a = \frac{1}{2}$. v) $f = (X-2)^2(X^2-4) + (X-2)^3(X-1)$, a = 2.
- iii) $f = X^6 3X^4 + 4$, a = i.
- vi) $f = (X-2)^2(X^2-4) 4(X-2)^3$, a = 2.
- **65**. Sea $n \in \mathbb{N}$. Determinar los $a \in \mathbb{C}$ tales que $f = nX^{n+1} (n+1)X^n + a$ tiene sólo raíces simples en \mathbb{C} .
- **66**. Determinar los $a \in \mathbb{R}$ tales que $f = X^{2n+1} (2n+1)X + a$ tiene al menos una raíz múltiple en \mathbb{C} .
- 67. Sea $f = X^{20} + 8X^{10} + 2a$. Determinar todos los valores de $a \in \mathbb{C}$ para los cuales f admite una raíz múltiple en \mathbb{C} . Para cada valor hallado determinar cuántas raíces distintas tiene f y la multiplicidad de cada una de ellas.
- i) Probar que para todo $a \in \mathbb{C}$, el polinomio $f = X^6 2X^5 + (1+a)X^4 2aX^3 + (1+a)X^2 2X + 1$ 68. es divisible por $(X-1)^2$.
 - ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.
- **69**. Determinar todos los $a \in \mathbb{C}$ tales que 1 sea raíz doble de $X^4 aX^3 3X^2 + (2+3a)X 2a$.
- **70**. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=1}^{n} X^k \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- 71. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} \frac{X^k}{k!} \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- **72**. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^4 + 2X^2 + 1$$
 y $f_{n+1} = (X - i)(f_n + f'_n), \ \forall n \in \mathbb{N}.$

Probar que i es raíz doble de f_n para todo $n \in \mathbb{N}$.

73. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^3 + 2X - 1$$
 y $f_{n+1} = Xf_n^2 + X^2f_n', \ \forall n \in \mathbb{N}.$

Probar que $gr(f_n) = 2^{n+1} - 1$ para todo $n \in \mathbb{N}$.

- i) Sea $f \in \mathbb{C}[X]$. Probar que $a \in \mathbb{C}$ es raíz de multiplicidad k de f si y sólo si es raíz de multiplicidad k-1 de (f:f').
 - ii) Sea $f \in \mathbb{Q}[X]$. Probar que si f es irreducible, entonces tiene todas sus raíces (en \mathbb{C}) simples.
- * 75. Sea P(x) un polinomio de grado a lo sumo n tal que $P(i) = \frac{1}{i+1}$ para $i = 0, 1, 2, \dots, n$. Hallar P(n+1).
- * 76. Sea P(x) un polinomio de grado a lo sumo n tal que $P(i) = 2^i$ para $i = 0, 1, 2, \ldots, n$. Hallar P(n+1).
- * 77. Sea P(x) un polinomio de grado a lo sumo n tal que P(i) es el i-ésimo número de Fibonacci para $i = 0, 1, 2, \dots, n$. Hallar P(n + 1).
- * 78. Dados 2n números $a_1,...,a_n$ y $b_1,...,b_n$ formamos una matriz de $n \times n$ de la siguiente manera: en la posición (i,j) escribimos el número $a_i + b_j$. Supongamos que el producto de los números en cada columna es el mismo. Probar que lo mismo ocurre con los productos de los números de las filas.

- * 79. (Designal dades de Cauchy) Sea $f = a_n x^n + \cdots + a_0 \in \mathbb{C}[X]$ un polinomio con coeficientes complejos. Sea M > 0 tal que $|f(z)| \le M$ siempre que $|z| \le 1$.
 - i) Probar que $|a_k| \leq M$ para todo $k = 0, 1, \dots, n$. Sugerencia: Ejercicio 26.
 - ii) Si $|f(z)| \leq M$ para todo z en el círculo de centro a y radio R, probar que $|f^k(a)| \leq \frac{k!M}{R^k}$.

Polinomios: factorización.

80. Factorizar en $\mathbb{C}[X]$ los polinomios

i) $X^6 - 8$.

ii) $X^4 + 3$.

iii) $X^7 - (-1+i)$. iv) $X^{11} - 2i(\sqrt{2} - \sqrt{6}i)^{-1}$. v) $X^6 - (2-2i)^{12}$. vi) $X^{12} + X^6 + 1$.

81. Factorizar en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i) $X^3 - 1$. ii) $X^4 - 1$.

iii) $X^6 - 1$.

iv) $X^8 - 1$.

82. Factorizar en $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i) $X^6 - 8$.

ii) $X^4 + 3$.

iii) $X^{12} + X^6 + 1$.

83. Factorizar los polinomios

i) $X^4 - 1$ en $(\mathbb{Z}/5\mathbb{Z})[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$

iii) $X^4 - 1$ en $(\mathbb{Z}/7\mathbb{Z})[X]$

ii) $X^4 + 3$ en $(\mathbb{Z}/7\mathbb{Z})[X]$

iv) $X^4 + X^3 + X^2$ en $(\mathbb{Z}/7\mathbb{Z})[X]$.

- i) Probar que $(X^n 1 : X^m 1) = X^{(n:m)} 1$.
 - ii) Hallar $(X^{a^n-1}-1:X^{a^m-1}-1)$ para $a \ge 2$ entero.
- **85**. i) Hallar todas las raíces racionales de

(a) $2X^5 + 3X^4 + 2X^3 - X$. (b) $X^5 - \frac{1}{2}X^4 - 2X^3 + \frac{1}{2}X^2 - \frac{7}{2}X - 3$. (c) $3X^4 + 8X^3 + 6X^2 + 3X - 2$. (d) $X^4 + 2X^3 - 3X^2 - 2$.

86. Factorizar los siguientes polinomios en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$

i) $X^4 - X^3 + X^2 - 3X - 6$.

ii) $X^4 - 6X^2 + 1$.

iii) $X^5 - X^3 + 17X^2 - 16X + 15$ sabiendo que 1 + 2i es raíz.

iv) $X^5 + 2X^4 + X^3 + X^2 - 1$ sabiendo que $-\frac{1}{2} + \frac{\sqrt{5}}{2}$ es raíz.

v) $f = X^6 + X^5 + 5X^4 + 4X^3 + 8X^2 + 4X + 4$ sabiendo que $\sqrt{2}i$ es raíz múltiple de f.

vi) $X^4 + 2X^3 + 3X^2 + 10X - 10$ sabiendo que tiene una raíz imaginaria pura.

vii) $X^5 - 3X^4 - 2X^3 + 13X^2 - 15X + 10$ sabiendo que una de sus raíces es una raíz sexta primitiva de la unidad.

87. Hallar todas las raíces complejas del polinomio $X^6-X^5-7X^4-7X^3-7X^2-8X-6$ sabiendo que tiene dos raíces cuya suma es 2 y cuyo producto es -6.

- 88. i) Hallar todas las raíces complejas de $f = X^5 4X^4 X^3 + 9X^2 6X + 1$ sabiendo que $2 \sqrt{3}$ es raíz de f.
 - ii) Hallar $f \in \mathbb{Q}[X]$ mónico de grado mínimo que tenga a $1+2\sqrt{5}$ y a $3-\sqrt{2}$ como raíces.
 - iii) Sea $f \in \mathbb{Q}[X]$ un polinomio de grado 5. Probar que si $\sqrt{2}$ y $1 + \sqrt{3}$ son raíces de f entonces f tiene una raíz racional.
 - iv) Sea $f \in \mathbb{Q}[X]$ tal que $f(1+\sqrt{2}) = 3$, $f(2-\sqrt{3}) = 3$ y $f(1+\sqrt{5}) = 3$. Calcular el resto de la división de f por $(X^2 2X 1)(X^2 4X + 1)(X^2 2X 4)$.
- 89. Factorizar el polinomio $X^4 + X^3 3X^2 + 4X 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que la suma de tres de sus raíces es $-\frac{3}{2} + \frac{\sqrt{3}}{2}i$.
- **90**. Hallar todos los $a \in \mathbb{C}$ tales que $f = X^4 (a+4)X^3 + (4a+5)X^2 (5a+2)X + 2a$ tenga a a como raíz doble. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 91. Determinar todos los $a \in \mathbb{C}$ tales que 2 es una raíz múltiple del polinomio

$$f = aX^5 + 8X^4 - 26X^3 + 44X^2 - 40X - (32a + 16).$$

Para cada valor de a hallado factorizar el polinomio en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$.

92. Hallar todos los $a \in \mathbb{C}$ para los cuales al menos una de las raíces de

$$f = X^6 + X^5 - 3X^4 + 2X^3 + X^2 - 3X + a$$

sea una raíz sexta primitiva de la unidad.

Para cada valor de $a \in \mathbb{Q}$ hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- **93.** Sea $z \in \mathbb{C}$ y sea $f_z = X^3 2zX^2 z^2X + 2z \in \mathbb{C}[X]$.
 - i) Sean $\alpha, \beta, \gamma \in \mathbb{C}$ las tres raíces de f_z . Probar que $\alpha\beta\gamma = -2z$.
 - ii) Determinar los valores de $z \in \mathbb{C}$ para los cuales f_z tiene dos raíces cuyo producto es igual a 2. Para cada valor hallado factorizar f_z en $\mathbb{C}[X]$.
- 94. i) ¿Cuántos polinomios mónicos de grado 2 hay en $(\mathbb{Z}/7\mathbb{Z})[X]$? ¿Cuántos de ellos son reducibles y cuántos irreducibles?
 - ii) Sea p un número primo. ¿Cuántos polinomios mónicos de grado 2 hay en $(\mathbb{Z}/p\mathbb{Z})[X]$? ¿Cuántos de ellos son reducibles y cuántos irreducibles?
- 95. (Lema de Gauss) Sea p un número primo y $f \in \mathbb{Z}[X]$ un polinomio. Supongamos que todos los coeficientes de f son múltiplos de p y que $f(X) = f_1(X)f_2(X)$ con $f_1, f_2 \in \mathbb{Z}[X]$. Probar que alguno de los factores f_1, f_2 tiene todos los coefficientes múltiplos de p.

Sugerencia: Considerar $\overline{f}, \overline{f_1}, \overline{f_2} \in (\mathbb{Z}/p\mathbb{Z})[X]$.

- **96**. Sea $f \in \mathbb{Z}[X]$ de grado 7 tal que toma alguno de los valores 1 o -1 para 7 valores enteros diferentes de X. Probar que f es irreducible en $\mathbb{Z}[X]$.
- **97**. Encontrar todos los $a \in \mathbb{Z}$ tales que (X-a)(X-10)+1 sea reducible en $\mathbb{Z}[X]$.
- **98**. Encontrar $a, b, c \in \mathbb{Z} \{0\}$ distintos tales que X(X a)(X b)(X c) + 1 sea reducible en $\mathbb{Z}[X]$.
- * **99**. Sean a_1, a_2, \ldots, a_n enteros distintos.
 - i) Probar que $(X a_1)(X a_2) \dots (X a_n) 1$ es irreducible en $\mathbb{Z}[X]$.
 - ii) Probar que $(X a_1)^2 (X a_2)^2 \dots (X a_n)^2 + 1$ es irreducible en $\mathbb{Z}[X]$.
- * 100. i) Probar que $X^2 + X + 1$ es irreducible en $(\mathbb{Z}/2\mathbb{Z})[X]$.
 - ii) Probar que $(X^2 + X)^{2^n} + 1$ es irreducible en $\mathbb{Z}[X]$.