Práctica 2

a) Sea $(z_n)_{n\geq 1}\subset\mathbb{C}$ una sucesión, probar que

$$z_n \to z$$
 si y sólo si $\operatorname{Re}(z_n) \to \operatorname{Re}(z)$ e $\operatorname{Im}(z_n) \to \operatorname{Im}(z)$

b) Se dice que una sucesión $(z_n)_{n\geq 1}\subset\mathbb{C}$ es de Cauchy si y sólo si dado $\varepsilon>0$ existe $n_0 = n_0(\varepsilon)$ tal que si $n, m \ge n_0$ entonces $|z_n - z_m| < \varepsilon$. Se sabe que en \mathbb{R} una sucesión es de Cauchy si y sólo si es convergente (es una forma de expresar la completitud de los números reales).

Probar que la sucesión $(z_n)_{n\geq 1}\subset\mathbb{C}$ es de Cauchy si y sólo si lo son las sucesiones reales $(\operatorname{Re}(z_n))_{n\geq 1}$ e $(\operatorname{Im}(z_n))_{n\geq 1}$.

- c) Deducir que en C se sigue verificando que una sucesión converge si y sólo si es de Cauchy.
- d) $z_n \to z \Rightarrow |z_n| \to |z|$. ¿Bajo qué condiciones vale la recíproca?
- 2. Escribir los primeros términos y calcular los límites de las siguientes sucesiones:

a)
$$ni^n$$

$$\mathbf{b)} \ n \left(\frac{1+i}{2} \right)^r$$

b)
$$n\left(\frac{1+i}{2}\right)^n$$
 c) $\left(\frac{(-1)^n+i}{2}\right)^n$

d)
$$\cos(n\pi) + i \frac{\sin(\frac{n\pi}{2})}{n^2}$$

d)
$$\cos(n\pi) + i\frac{\sin(\frac{n\pi}{2})}{n^2}$$
 e) $\frac{n+1}{n} + i\left(\frac{n+1}{n}\right)^n$ f) $\frac{e^{in\frac{\pi}{2}}}{n}$

$$\mathbf{f)} \; \frac{e^{in\frac{\pi}{2}}}{n}$$

$$\mathbf{g)} \left(\frac{1+i}{\sqrt{2}} \right)^n$$

$$\mathbf{h)} \, \left(\frac{1+i}{2}\right)^n$$

i)
$$z^{-n}$$

3. Probar

a)
$$\lim_{z \to z_0} f(z) = L$$
 si y sólo si $\lim_{z \to a} \overline{f(z)} = \overline{L}$

a)
$$\lim_{z \to z_0} f(z) = L$$
 si y sólo si $\lim_{z \to a} \overline{f(z)} = \overline{L}$
b) $\lim_{z \to z_0} f(z) = L$ si y sólo si $\lim_{z \to z_0} \operatorname{Re}(f(z)) = \operatorname{Re}(L)$ y $\lim_{z \to z_0} \operatorname{Im}(f(z)) = \operatorname{Im}(L)$

4. Calcular

a)
$$\lim_{z \to -2i} \frac{z^2 + 2(1+i)z + 4i}{z + 2i}$$

b)
$$\lim_{z \to i} \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$$

c)
$$\lim_{z \to -i} z \cdot \overline{z}$$

$$\mathbf{d)} \lim_{z \to 0} \frac{\overline{z}^2}{z}$$

e)
$$\lim_{z \to i} f(z) \cos f(z) = \begin{cases} z^2 + 2z &, z \neq i \\ 3 + 2i &, z = i \end{cases}$$
 f) $\lim_{z \to \infty} \frac{z^3 - 3iz + 2 + i}{z^4 + iz^2 - (3 + 4i)z + 6}$

f)
$$\lim_{z \to \infty} \frac{z^3 - 3iz + 2 + i}{z^4 + iz^2 - (3 + 4i)z + 6}$$

- 5. Probar la continuidad de las siguientes funciones en el dominio indicado:
 - a) $z, \overline{z}, \operatorname{Re}(z) \in \operatorname{Im}(z) \text{ en } \mathbb{C}.$
 - $\mathbf{b)} \ \frac{1}{z} \text{ en } \mathbb{C} \{0\}.$
- 6. Hallar los puntos de discontinuidad de:

a)
$$f(z) = \frac{z}{z^4 + 1}$$

b)
$$f(z) = \frac{1}{e^x(\cos y + i \sin y) + 1}$$
$$(z = x + iy)$$

7. Sea $\varphi: \mathbb{C}_{\neq 0} \to (-\pi, \pi]$ definida por : $\varphi(z)$ es el único número de $(-\pi, \pi]$ tal que $z = |z| \ e^{i\varphi(z)}$. ¿Es continua en todo su dominio? ¿Dónde lo es?

Nota: dado $z \in \mathbb{C}_{\neq 0}$, al número $\varphi(z)$ se lo llama **argumento principal de** z y se lo nota: $\varphi(z) = \text{Arg}(z)$.

8. Encontrar los puntos de discontinuidad de las siguientes funciones definidas para $z \neq 0$.

a)
$$f(z) = \arg(z)$$

b)
$$f(z) = \log|z| + i\operatorname{Arg}(z)$$

9. ¿Cuáles de las siguientes funciones se pueden definir en z=0 de modo tal que resulten continuas en \mathbb{C} ?

a)
$$\frac{\operatorname{Re}(z)}{|z|^2}$$

$$\mathbf{b)} \; \frac{\mathrm{Re}(z)}{|z|}$$

c)
$$\frac{(\operatorname{Re}(z))^2}{|z|}$$

$$\mathbf{d)} \ \frac{\operatorname{Re}(z^2)}{|z|^2}$$