ELEMENTOS DE CÁLCULO NUMÉRICO (B) - 2do. cuatrimestre 2014 Práctica 6 - Determinantes

1. Calcular el determinante de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
. (b) $\begin{pmatrix} 6 & 5 \\ \frac{3}{5} & \frac{1}{2} \end{pmatrix}$. (c) $\begin{pmatrix} -2 & 3 & 1 \\ 4 & 6 & 5 \\ 0 & 2 & 1 \end{pmatrix}$. (d) $\begin{pmatrix} -2 & 1 & 1 \\ 4 & -2 & 4 \\ 2 & -1 & 5 \end{pmatrix}$.

2. Para cada una de las siguientes matrices, hallar su determinante usando propiedades y realizando la menor cantidad de cálculos posibles.

(a)
$$\begin{pmatrix} 2 & -10 & 17 \\ 0 & 1 & 11 \\ 0 & 0 & 3 \end{pmatrix}$$
. (c) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 7 & 6 \\ 1 & 2 & 3 \end{pmatrix}$.
(b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ -9 & -1 & 0 & 0 \\ 12 & 7 & 9 & 0 \\ 0 & -15 & 3 & 4 \end{pmatrix}$. (d) $\begin{pmatrix} 3 & -1 & 2 \\ 6 & -2 & 4 \\ 1 & 7 & 3 \end{pmatrix}$.

3. Calcular el determinante de cada una de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 0 & 3 \\ 4 & 0 & -1 \\ 2 & 8 & 6 \end{pmatrix}$$
. (c) $\begin{pmatrix} 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 \end{pmatrix}$. (e) $\begin{pmatrix} 1 & 3 & 1 & 5 & 3 \\ -2 & -7 & 0 & -4 & 2 \\ 0 & 0 & 1 & 0 & 10 \\ 0 & 0 & 2 & 1 & 1 \\ 5 & 0 & 1 & 1 & 1 \end{pmatrix}$. (b) $\begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$. (d) $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{pmatrix}$.

4. Sea $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathbb{R}^{3\times 3}$ tal que $\det(A) = 5$. Calcular los determinantes de las matrices:

(a)
$$\begin{pmatrix} d & e & f \\ g & h & i \\ a & b & c \end{pmatrix}$$
. (b) $\begin{pmatrix} -a & -b & -c \\ d-3a & e-3b & f-3c \\ 2g & 2h & 2i \end{pmatrix}$. (c) $\begin{pmatrix} a & g & d \\ b & h & e \\ c & i & f \end{pmatrix}$.

5. Hallar **todos** los $k \in \mathbb{R}$ para los que A es inversible en cada uno de las siguientes casos:

1

(a)
$$\begin{pmatrix} 5 & 3 \\ k & 2 \end{pmatrix}$$
. (b) $\begin{pmatrix} 4 & k \\ k & -2 \end{pmatrix}$. (c) $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 1 & k \\ 0 & 0 & 2 \end{pmatrix}$. (d) $\begin{pmatrix} 1 & 2 & k \\ k & 4 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- 6. Sea $A \in \mathbb{R}^{4 \times 4}$ tal que $\det(A) = 2$. Calcular:
 - (a) $\det(A^3)$.
- (d) $\det(A^{-3})$.
- (b) $\det(-2 \cdot A^3)$.
- (e) $\det(B \cdot A \cdot B^{-1})$, $B \in \mathbb{R}^{4 \times 4}$ inversible.
- (c) $\det((-2 \cdot A)^3)$.
- 7. Sean $A, B \in \mathbb{R}^{3\times 3}$ tales que $\det(A) = 4$ y $B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 3 \\ -2 & 1 & 1 \end{pmatrix}$. Calcular:
 - (a) $\det(A + A \cdot B)$.
- (b) $\det(-2A^{-1} + A^{-1} \cdot 5B)$.
- 8. Sea $B \in \mathbb{R}^{4\times 4}$ una matriz inversible y sea $A \in \mathbb{R}^{4\times 4}$ una matriz que verifica: $\det(A) = 8$ y $A \cdot B = \det(B) \cdot I$. Hallar $\det(B)$.
- 9. Sean $A \in \mathbb{R}^{4\times 3}$ y $B \in \mathbb{R}^{3\times 4}$. Determinar **todos** los valores de $a \in \mathbb{R}$ para los cuales $B \cdot A \in \mathbb{R}^{3\times 3}$ es inversible, siendo:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & 1 & 6 \\ 1 & 1 & 0 \\ 4 - a & 3 & a^2 - 4 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

- 10. Clasificar el sistema lineal S: $\begin{cases} -x + \alpha y + z &= \alpha \\ -x + (1 \alpha)z &= 1 \\ -x + y + z &= \alpha^2 \end{cases}$ en términos del valor $\alpha \in \mathbb{R}$ usando determinantes.
- 11. Encontrar **todos** los valores de $a \in \mathbb{R}$ para los cuales el sistema Ax = x admite solución no trivial, siendo

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 2 & a+1 & a \\ -1 & a & 0 \end{pmatrix}.$$

12. Sean $A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 3 \end{pmatrix}$ y $B \in \mathbb{R}^{3 \times 3}$ una matriz con $\det(B) = 5$. Hallar **todos** los $x \in \mathbb{R}^{3 \times 1}$ tales que $(B \cdot A) \cdot x = 2B \cdot x$.