1 Análisis Multivariado I - Práctica 1

1.1 Álgebra de matrices

- 1. Probar que tr(A + B) = tr(A) + tr(B) y tr(AB) = tr(BA).
- 2. Mostrar que los autovalores no nulos de AB coinciden con los de BA. (Si las matrices son cuadradas, los nulos también coinciden).
- 3. Sea A una matriz simétrica de $d \times d$.
 - (a) Probar que todos sus autovalores son reales. Si llamamos $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ a estos autovalores, mostrar que:

•
$$tr(A) = \sum_{i=1}^{d} \lambda_i$$

$$\bullet |A| = \prod_{i=1}^{d} \lambda_i$$

•
$$|I \pm A| = \prod_{i=1}^{d} (1 \pm \lambda_i)$$

- (b) $A \ge 0 \Leftrightarrow \lambda_i \ge 0 \ \forall i$.
- (c) $A > 0 \Leftrightarrow \lambda_i > 0 \ \forall i$.
- (d) $A \ge 0$ y $|A| \ne 0 \Rightarrow A > 0$.
- (e) $A > 0 \Rightarrow A^{-1} > 0$.
- (f) $A > 0 \Leftrightarrow \text{ existe } R \in \mathbb{R}^{d \times d}$ no singular tal que $A = RR^{\mathsf{T}} \Leftrightarrow \text{ existe una matriz ortogonal } B \in \mathbb{R}^{d \times d}$ tal que si $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ con $\lambda_i > 0 \quad \forall i$ entonces $A = B\Lambda B^{\mathsf{T}}$ (es lo que se denomina descomposici'on espectral de A).
- (g) $A \geq 0$ de rango $r \Leftrightarrow$ existe $R \in \mathbb{R}^{d \times d}$ de rango r tal que $A = RR^{\mathsf{T}} \Leftrightarrow$ existe una matriz ortogonal $B \in \mathbb{R}^{d \times d}$ tal que si $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ con $\lambda_i \geq 0 \ \forall i$ entonces $A = B\Lambda B^{\mathsf{T}}$.
- 4. Una matriz P de $d \times d$ se dice de proyección si es simétrica e idempotente (es decir, $P^2 = P$). Probar que:
 - (a) $rg(P) = r \Leftrightarrow \lambda_i = 1$ para i = 1, ..., r y $\lambda_i = 0$ para i = r+1, ..., d. Entonces $P = \sum_{i=1}^{r} \mathbf{t}_i \mathbf{t}_i^{\mathrm{T}}$ para ciertos \mathbf{t}_i ortonormales. ¿Cómo queda la descomposición espectral en este caso?
 - (b) rg(P) = tr(P).
 - (c) I-P también es de proyección. ¿Qué rango tiene? ¿Sobre qué espacio proyecta?
- 5. Sea X de $n \times p$ y de rango p. Mostrar que $P = X(X^{T}X)^{-1}X^{T}$ es una matriz de proyección. ¿Sobre qué espacio proyecta?

1

1.2 Esperanza, varianza y covarianza de vectores aleatorios

- 1. Si \mathbf{x} e \mathbf{y} son vectores aleatorios (no necesariamente de la misma dimensión) probar que:
 - (a) $Cov(\mathbf{x}, \mathbf{y}) = \mathbb{E}(\mathbf{x}\mathbf{y}^{T}) \mathbb{E}(\mathbf{x})\mathbb{E}(\mathbf{y}^{T})$.
 - (b) $Cov(A\mathbf{x}, B\mathbf{y}) = ACov(\mathbf{x}, \mathbf{y}) B^{\mathrm{T}}$.
 - (c) Si \mathbf{a} es un vector no aleatorio, $VAR(\mathbf{x} \mathbf{a}) = VAR(\mathbf{x})$.
 - (d) $VAR(A\mathbf{x}) = AVAR(\mathbf{x}) A^{T}$.
- 2. Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una muestra de vectores aleatorios de dimensión d (m.a.) con dispersión Σ y $\{a_i\}_{1 \le i \le n}$, $\{b_i\}_{1 \le i \le n}$ escalares no aleatorios. Mostrar que:

(a) VAR
$$\left(\sum_{i=1}^{n} a_i \mathbf{x}_i\right) = \left(\sum_{i=1}^{n} a_i^2\right) \Sigma$$
.

(b) Cov
$$\left(\sum_{i=1}^n a_i \mathbf{x}_i, \sum_{j=1}^n b_j \mathbf{x}_j\right) = \mathbf{O} \Leftrightarrow \sum_{i=1}^n a_i b_i = 0.$$

- 3. Si $\mathbf{x} \sim (\mu, \Sigma)$ y A es simétrica, probar que $\mathbb{E}(\mathbf{x}^{\mathrm{T}} A \mathbf{x}) = tr(A \Sigma) + \mu^{\mathrm{T}} A \mu$.
- 4. Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una m.a. (μ, Σ) . Mostrar que:
 - (a) $\mathbb{E}(\bar{\mathbf{x}}) = \mu \text{ y VAR}(\bar{\mathbf{x}}) = \Sigma/n$.

(b)
$$\mathbb{E}(Q) = (n-1)\Sigma$$
, con $Q = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^{\mathrm{T}}$

1.3 Distribución Normal Multivariada

- 1. (a) Sean $\mathbf{y}_i \sim N_d(\mu_i, \Sigma_i)$ independientes $(1 \leq i \leq n)$ y $\mathbf{a} = (a_1, \dots, a_n)^{\mathrm{T}} \in \mathbb{R}^n$. Probar que $\sum_{i=1}^n a_i \mathbf{y}_i \sim N_d(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \Sigma_i)$. (Sugerencia: usar la distribución normal univariada).
 - (b) Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una m.a. $N_d(\mathbf{0}, \Sigma)$. Llamemos $X^{\mathrm{T}} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{d \times n}$.
 - i. Si **a** de $n \times 1$ es un vector no aleatorio, entonces $X^{\mathsf{T}} \mathbf{a} \sim N_d \left(\mathbf{0}, \|\mathbf{a}\|^2 \Sigma \right)$.
 - ii. Si $\{\mathbf{a}_1, \dots, \mathbf{a}_r\}$ es un conjunto de vectores ortogonales no aleatorios, entonces los vectores aleatorios $\mathbf{u}_i = X^{\mathsf{T}} \mathbf{a}_i \ (1 \le i \le r)$ son independientes.
 - iii. Si **b** de $d \times 1$ es un vector no aleatorio, entonces X **b** $\sim N_n (\mathbf{0}, (\mathbf{b}^T \Sigma \mathbf{b}) I_n)$. En particular, $\mathbf{x}^{(j)} \sim N_n (\mathbf{0}, \sigma_{jj} I_n)$, con $\Sigma = (\sigma_{ij})$.

Definición: Si las variables aleatorias $X_1, X_2, ..., X_n$ son i.i.d. $N_1(\mu_i, \sigma^2)$, entonces

$$U = \sum_{i=1}^{n} \frac{X_i^2}{\sigma^2} \sim \chi_n^2(\delta)$$

es decir que la distribución de la variable aleatoria U se denomina χ^2 no central con parámetro de centralidad $\delta = \sum_{i=1}^{n} \frac{\mu_i^2}{\sigma^2}$.

- 2. Consideremos $\mathbf{x} \sim N_d(\mu, \Sigma)$.
 - (a) Probar que $\mathbf{x}^{\mathrm{T}} \Sigma^{-1} \mathbf{x} \sim \chi_d^2(\delta)$ con $\delta = \mu^{\mathrm{T}} \Sigma^{-1} \mu$.
 - (b) Si B es simétrica de rango k y $B\Sigma$ es idempotente, probar que $\mathbf{x}^{\mathsf{T}}B\mathbf{x} \sim \chi_k^2(\delta)$ con $\delta = \mu^{\mathsf{T}}B\mu$.

1.4 Distribución Wishart

En los 4 ejercicios siguientes supondremos que $W \sim \mathcal{W}_d\left(m, \Sigma\right)$.

- 1. Probar que $\mathbb{E}(W) = m\Sigma$.
 - (a) Si **b** de $d \times 1$ es un vector de constantes, $(\mathbf{b}^{\mathrm{T}}W\mathbf{b}) / (\mathbf{b}^{\mathrm{T}}\Sigma\mathbf{b}) \sim \chi_{m}^{2}$.
 - (b) En particular, si $\mathbf{b} = \mathbf{e}_j$ el vector canónico j-ésimo, resulta $w_{jj}/\sigma_{jj} \sim \chi_m^2$.
- 2. Si $C \in \mathbb{R}^{q \times d}$ es una matriz no aleatoria de rango q, entonces $CWC^{\scriptscriptstyle T} \sim \mathcal{W}_q\left(m, C\Sigma C^{\scriptscriptstyle T}\right)$.
- 3. Si se parten las matrices W y Σ de la siguiente manera:

$$W = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix} \text{ y } \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

con W_{11} y Σ_{11} cuadradas y de la misma dimensión y si $\Sigma_{12} = \mathbf{O}$, entonces W_{11} y W_{22} tienen distribución Wishart y son independientes. Hallar los parámetros correspondientes.

4. Si W_1 y W_2 son independientes y $W_i \sim \mathcal{W}_d\left(m_i, \Sigma\right)$, entonces $W_1 + W_2 \sim \mathcal{W}_d\left(m_1 + m_2, \Sigma\right)$.