Topología

Segundo cuatrimestre - 2013 Práctica 4

Compacidad y axiomas de separación

Compacidad

- 1. Pruebe que si X tiene la topología del complemento finito, entonces es compacto.
- 2. Decida si [0,1] es compacto para
 - (a) la topología $\{U: [0,1] \setminus U \text{ es numerable o igual a } [0,1]\}.$
 - (b) la topología de subespacio de \mathbb{R}_l .
- 3. Sean $\mathcal{T}, \mathcal{T}'$ dos topologías en X.
 - (a) Pruebe que si τ' es más fina que τ y (X,τ') es compacto, entonces (X,τ) es compacto.
 - (b) Pruebe que si (X,τ) y (X,τ') son compactos y Hausdorff, entonces o bien $\tau=\tau'$ o bien τ y τ' no son comparables.
- 4. Sean X e Y espacios topológicos, con Y compacto y Hausdorff. Puebe que una función $f: X \to Y$ es continua si y sólo su gráfico $\Gamma_f = \{(x, f(x)) \in X \times Y : x \in X\}$ es cerrado en $X \times Y$.
- 5. Sea (X, τ) un espacio topológico y sea $\tau_c = \{U \in \tau : X \setminus U \text{ es compacto}\} \cup \{\varnothing\}$. Pruebe que τ_c es una topología sobre X.
- 6. Sea X espacio métrico. Pruebe que las siguientes afirmaciones son equivalentes:
 - (a) X es acotado para toda métrica que induzca la topología de X.
 - (b) Toda función continua $\phi: X \to \mathbb{R}$ es acotada.
 - (c) X es compacto.
- 7. Considere el siguiente producto fibrado.

$$P \longrightarrow X$$

$$\downarrow \text{pull} \qquad \qquad P = X \times_Y Z$$

$$Z \longrightarrow Y$$

Pruebe que si X y Z son compactos, e Y Hausdorff, entonces P es compacto. Halle un ejemplo en el que Y no sea Hausdorff y P no sea compacto.

- 8. Sea $f: X \to Y$ survectiva y propia. Pruebe que si X es Hausdorff, entonces Y también lo es.
- 9. Sean X e Y espacios topológicos, y sean $A\subseteq X$, $B\subseteq Y$ subespacios compactos. Pruebe que si W es un abierto de $X\times Y$ tal que $A\times B\subseteq W$, entonces existen abiertos $U\subset X$ y $V\subseteq Y$ tales que $A\times B\subseteq U\times V\subseteq W$.

Compacidad local

- 10. Pruebe que \mathbb{Q} no es localmente compacto.
- 11. Pruebe que $[0,1]^{\omega}$ no es localmente compacto con la topología uniforme.

- 12. Pruebe que si $\prod_{i \in I} X_i$ es localmente compacto y $X_i \neq \emptyset$ para todo i, entonces cada X_i es localmente compacto y todos los X_i , salvo una cantidad finita, son compactos.
- 13. Pruebe que si X es localmente compacto y $f: X \to Y$ es continua y abierta, entonces f(X) es localmente compacto. Halle un ejemplo que muestre que la hipótesis f abierta es necesaria.

Compactificación de Alexandroff

- 14. Pruebe que la compactificación a un punto de \mathbb{N} es homeomorfa a $\{0\} \cup \{1/n : n \in \mathbb{N}\}$ con la topología subespacio de \mathbb{R} .
- 15. Usando la proyección estereográfica $p: S^n \setminus \{N\} \to \mathbb{R}^n$ definida por

$$p(x_1, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \dots, x_n)$$

pruebe que la compactificación a un punto de \mathbb{R}^n es homeomorafa a S^n .

16. Pruebe que si $f: X \to Y$ es un homeomorfismo, entonces f se extiende a un homeomorfismo entre sus compactificaciones a un punto.

Axiomas de separación

- 17. Pruebe que si X es regular, entonces dos puntos distintos cualesquiera de X admiten entornos cuyas clausuras son disjuntas.
- 18. Pruebe que si X es normal, entonces todo par de cerrados disjuntos de X admiten entornos cuyas clausuras son disjuntas.
- 19. Pruebe que un subespacio cerrado de un espacio normal es normal.
- 20. Pruebe que si X tiene la topología del orden, entonces X es regular.
- 21. Sea $\{X_{\alpha}\}$ una familia de espacios topológicos no vacíos. Pruebe que si $\prod X_{\alpha}$ es Hausdorff ó regular ó normal, entonces también lo es cada X_{α} .
- 22. Sea X un conjunto y sean $\mathcal{T}, \mathcal{T}'$ topologías en X tales que $\mathcal{T} \subset \mathcal{T}'$. Suponiendo que X es Hausdorff (o regular o normal) con una de estas topologías, ¿qué puede deducirse de X con la otra topología?
- 23. Sean $f, g: X \to Y$ continuas, Y Hausdorff. Pruebe que $\{x: f(x) = g(x)\}$ es cerrado en X.
- 24. Pruebe que si X es normal y conexo entonces tiene un solo punto o es no numerable.
- 25. Sea Z un espacio topológico. Si Y es un subespacio de Z, decimos que Y es retracto de Z si existe una función continua $r:Z\to Y$ tal que r(y)=y para todo $y\in Y$.
 - (a) Pruebe que si Z es Hausdorff e Y es un retracto de Z, entonces Y es cerrado en Z.
 - (b) Sea $A \subset \mathbb{R}^2$ con dos elementos. Pruebe que A no es un retracto de \mathbb{R}^2 .
 - (c) Pruebe que S^1 es un retracto de $\mathbb{R}^2 \setminus \{0\}$.
- 26. Pruebe que si $\{f_{\alpha}:X\to\mathbb{R}\}$ es una familia de funciones continuas que separan puntos de cerrados, entonces es inicial.
- 27. Pruebe que si Y es normal con base \mathcal{B} , entonces Y es subespacio de $[0,1]^J$ con $J \subset \mathcal{B} \times \mathcal{B}$.
- 28. Pruebe que $\mathbb{R}_l \times \mathbb{R}_l$ no es normal, pero es completamente regular.

- 29. Sea X completamente regular. Sean A,B cerrados disjuntos de X. Pruebe que si A es compacto, entonces existe una función continua $f:X\to I$ tal que $f(A)=\{0\}$ y $f(B)=\{1\}$.
- 30. Pruebe que si X es localmente compacto y Hausdorff, entonces es completamente regular.

Compactificación de Stone-Čech

- 31. Sea Y una compactificación T_2 de X, y sea $\beta(X)$ la compactificación de Stone-Čech. Pruebe que existe una función cerrada y suryectiva $g:\beta(X)\to Y$ que se restringe a la identidad de X.
- 32. (a) Pruebe que si $f: S_{\Omega} \to \mathbb{R}$ es continua, entonces es eventualmente constante.
 - (b) Pruebe que la compactificación en un punto de S_{Ω} y la compactificación de Stone-Čech son equivalentes.
 - (c) Concluya que toda compactificación de S_{Ω} es equivalente a la compactificación en un punto.
- 33. Sea X completamente regular. Pruebe que X es conexo si y sólo si $\beta(X)$ es conexo.
- 34. Sea X discreto.
 - (a) Pruebe que si $A\subset X\subset \beta(X)$, entonces \overline{A} y $\overline{X\setminus A}$ son disjuntos, donde las clausuras se toman en $\beta(X)$.
 - (b) Pruebe que si U es abierto en $\beta(X)$, entonces \overline{U} es abierto en $\beta(X)$.
 - (c) Pruebe que $\beta(X)$ es totalmente disconexa.

Grupos topológicos

Un grupo topológico G es un grupo y un espacio topológico tal que las funciones $(x,y)\mapsto x.y$, $x\mapsto x^{-1}$ y $x\mapsto e$ son continuas.

- 35. Pruebe que $(\mathbb{R},+)$, (S^1,\cdot) y $(GL(n,\mathbb{R}),\cdot)$ son grupos topológicos.
- 36. Pruebe que G es un grupo topológico si y sólo si la función $H: G \times G \to G$, $H(g,h) = g \cdot h^{-1}$ es continua.
- 37. Pruebe que para cada $a \in G$, las funciones $L_a : G \to G$ y $R_a : G \to G$, definidas por $L_a(g) = a \cdot g$, $R_a(g) = g \cdot a$ son homeomorfismos.
- 38. Sea G un grupo topológico, sea e el neutro de G y sea U abierto que contiene a e. Pruebe que existe V abierto que contiene a e tal que $V \cdot V \subset U$ y $V^{-1} \subset U$.
- 39. Pruebe que si un grupo topológico G es T_0 , entonces es T_2 .
- 40. Pruebe que si H es un subgrupo de un grupo topológico G, entonces la clausura de H es también un subgrupo. Pruebe que si H es invariante, entonces su clausura también.
- 41. De los grupos topológicos $GL(n,\mathbb{R}), SL(n,\mathbb{R}), O(n,\mathbb{R}), SO(n,\mathbb{R})$, decida cuáles son compactos y cuáles son conexos.