ANALISIS NUMERICO — Práctica 4

Segundo Cuatrimestre de 2012

Ejercicio 1. Probar que las normas

$$||u||_{W^{1,2}} = ||u||_{L^2} + \sum_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2} \quad \text{y} \quad ||u||_{H^1} = \left(||u||_{L^2}^2 + \sum_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^2}^2 \right)^{1/2}$$

son equivalentes. Verificar que la norma de H^1 se deriva de un producto escalar.

Ejercicio 2. Considerar el problema: encontrar $u:\overline{\Omega}\longrightarrow \mathbb{R},\,\Omega\in\mathbb{R}^n$ un abierto acotado, tal que:

$$\begin{cases} -\triangle u + u = f \text{ en } \Omega \\ u = 0 \text{ sobre } \Gamma = \partial \Omega \end{cases}$$

con f una función prefijada en $C(\overline{\Omega})$.

- i) ¿Qué se considera una solución clásica del problema?
- ii) ¿Cómo definiría una solución débil?
- iii) Probar que toda solución clásica es una solución débil.
- iv) Probar que existe una solución única en $H_0^1(\Omega)$ de la formulación débil.

Ejercicio 3. Considerar el problema: encontrar $u : \overline{\Omega} \longrightarrow \mathbb{R}$, $\Omega \in \mathbb{R}^n$ un abierto acotado de clase C^1 , tal que:

$$\begin{cases} -\triangle u + u = f & \text{en } \Omega \\ \frac{\partial u}{\partial n} = 0 & \text{sobre } \Gamma = \partial \Omega \end{cases}$$

con f una función prefijada en $C(\overline{\Omega})$.

- i) Defina solución clásica y débil para este problema.
- ii) Probar que toda solución clásica es una solución débil.
- iii) Probar que existe una solución única en $H^1(\Omega)$ de la formulación débil.

Ejercicio 4. a) Sea $\Omega = [0,1] \times [0,1]$, probar que existe una cosntante C > 0 tal que, para toda $u \in H^1(\Omega)$:

$$||u||_{L^2(\partial\Omega)} \le C||u||_{H^1(\Omega)}.$$

b) Considerar el problema: encontrar $u:\overline{\Omega}\longrightarrow \mathbb{R},$ tal que:

$$\begin{cases}
-\Delta u = f & \text{en } \Omega \\
u = 0 & \text{en } \Gamma_1 \\
\frac{\partial u}{\partial n} = g & \text{en } \partial\Omega - \Gamma_1
\end{cases}$$

1

con
$$f \in C(\overline{\Omega})$$
 y $g \in L^2(\partial \Omega)$ y $\Gamma_1 = \{(x, y) : 0 \le x \le 1, y = 0\}.$

- i) Definir solución clásica y débil en un espacio adecuado $V \subset H^1(\Omega)$.
- ii) Probar que toda solución clásica es una solución débil.
- iii) Probar que existe una solución única en V de la formulación débil.

Ejercicio 5. Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Sean $a_{i,j} \in C^1(\overline{\Omega})$, $1 \leq i, j \leq n$ que verifican la condición de elipticidad:

$$\sum_{i,j=1}^{n} a_{i,j}(x)\chi_i\chi_j \ge \alpha |\chi|^2 \quad \forall x \in \Omega, \quad \forall \chi \in \mathbb{R}^n, \quad \alpha > 0$$

Sea también $a_0(x) \in C(\overline{\Omega})$. Se busca una función $u : \overline{\Omega} \longrightarrow \mathbb{R}$ que verifique:

$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{i,j} \frac{\partial u}{\partial x_{i}} \right) + a_{0} u = f \text{ en } \Omega \\ u = 0 \text{ sobre } \Gamma = \partial \Omega \end{cases}$$

- i) Defina solución clásica y débil para este problema.
- ii) Probar que toda solución clásica es una solución débil.
- iii) Probar que para $a_0(x) \ge 0$ en Ω y $f \in L^2$ existe una solución única en $H_0^1(\Omega)$ de la formulación débil.

Ejercicio 6. Considere el siguiente problema en $\Omega \subset \mathbb{R}^2$:

$$\begin{cases} -\triangle u + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = f & \text{en } \Omega \\ u|_{\partial\Omega} = 0 \end{cases}$$

Donde β_1 y β_2 son constantes en \mathbb{R} y $f \in L^2(\Omega)$.

- i) Hallar la forma debil en un espacio adecuado V.
- ii) Probar que existe una solución única en V de la formulación débil. Sug. : Para ver la coercividad verifique que:

$$\int_{\Omega} (\beta_1 \frac{\partial v}{\partial x} + \beta_2 \frac{\partial v}{\partial y}).v = 0, \forall v \in V$$

Ejercicio 7. (a) Dado el problema variacional

$$a(u,v) = \int fv$$
 para todo $v \in V$

con $a:V\times V\to \mathbb{R}$ una forma bilineal simétrica. Considere la respectiva aproximación de Galerkin sobre un espacio discreto $V_h=V_h^1\oplus V_h^2\subset V$ que posee la propiedad de que $a(v_h^1,v_h^2)=0$ para todo par $v_h^1\in V_h^1,v_h^2\in V_h^2$. Demuestre que $u_h=u_h^1+u_h^2$ es solución de la aproximación de Galerkin si y solo si los u_h^i resuelven respectivamente

$$a(u_h^i, v_h^i) = \int f v_h^i$$
 para todo $v_h^i \in V_h^i$

(b) Tome $a(u, v) = \int_0^1 u'v'$ y $V = H_0^1(0, 1)$ en el item previo y considere $(0, 1) = I = \bigcup_{i=0}^{N-1} I_i$, $I_i = (x_i, x_{i+1})$, con $x_{i+1} = x_i + h$. Tome entonces

 $V_h^1 = \{u \in H_0^1 \text{ tal que } u \in P_1(I_i) \text{ para todo } 0 \le i \le N-1\} = <\phi_1, ..., \phi_{N-1} >$ $\operatorname{con} \phi_i(x_j) = \delta_i^j, \text{ y sea } V_h^2 = <\hat{\phi}_0, ..., \hat{\phi}_{N-1} > \operatorname{con}$

$$\hat{\phi}_i = \begin{cases} \frac{4}{h^2} (x - x_i)(x_{i+1} - x) & x \in I_i \\ 0 & x \in I - I_i \end{cases}$$

Demuestre que $V_h = V_h^1 \oplus V_h^1$ está en las hipótesis del item previo, y entonces se pide hallar los β_i que verifican $u_h = \sum \alpha_i \phi_i + \beta_i \hat{\phi}_i$.

Ejercicio 8. Dar dos ejemplos de formas bilineales $(a_{i,j})$ diferentes, que corresponden a formas variacionales distintas, pero den lugar al mismo operador diferencial.

Ejercicio 9. Sea Ω un dominio acotado en \mathbb{R}^n , n=1,2,3. Sea T_h una subdivisión de Ω en elementos K (intervalos en \mathbb{R} , triángulos o cuadriláteros en \mathbb{R}^2 , tetraedros en \mathbb{R}^3). Probar que una función definida en todo Ω y que es polinomial en cada elemento, pertenece a $H^1(\Omega)$ si y sólo si es continua en Ω .

Ejercicio 10. Encontrar la dimensión de los siguientes espacios de funciones, definidas sobre un elemento K en \mathbb{R}^2 :

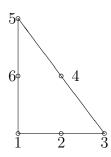
- i) funciones lineales
- ii) funciones cuadráticas
- iii) $P_r(K) = \{v : v \text{ es un polinomio de grado } \leq r \text{ sobre } K\}$
- iv) funciones bilineales ($v = a_0 + a_1x + a_2y + a_3xy$).

Ejercicio 11. Sea C_h una triangulación de un dominio acotado con frontera poligonal $\Omega \subset \mathbb{R}^2$ (es decir, una subdivisión de Ω en triángulos que no se superponen, y tal que los vértices de ningún triángulo se encuentran sobre los lados de otro triángulo).

- i) Sea V_h el espacio de funciones continuas definidas en Ω , lineales en cada triángulo de C_h . Probar que una función en V_h está unívocamente determinada por su valor en los nodos de C_h (incluyendo los pertenecientes al borde de Ω). Verificar que la función resulta continua.
- ii) Sea V_h el espacio de funciones continuas definidas en Ω , cuadráticas en cada triángulo de C_h . Probar que una función en V_h está univocamente determinada por ejemplo por su valor en los nodos de C_h (incluyendo los pertenecientes al borde de Ω) y en el punto medio de cada lado de los elementos de C_h .

Ejercicio 12. Sea T_h una triangulación de un dominio acotado con frontera poligonal $\Omega \subset \mathbb{R}^2$. Sea V_h el espacio de funciones continuas definidas en Ω , cuadráticas en cada triángulo de T_h .

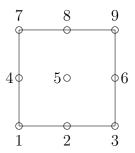
- i) Explicar como elegiría los nodos en cada triángulo para garantizar que una función en V_h esté univocamente determinada por su valor en los nodos elegidos.
- ii) Considere ahora el triángulo de referencia y los nodos n_j , $1 \le j \le 6$ como se indica en la Figura. Hallar ϕ_i , $1 \le i \le 6$ las funciones en V_h que satisfacen $\phi_i(n_j) = \delta_{ij}$.



Ejercicio 13. Sea Q_h una na subdivisi \hat{U} n en rectángulos Q, con lados paralelos a los ejes coordinados de un dominio acotado $\Omega \subset \mathbb{R}^2$. Sea V_h el espacio de funciones continuas definidas en Ω , tal que en cada rect·ngulo es una funci \hat{U} n de $Q_2 = \{v : v = \sum c_j p_j(x) q_j(y)\}$ donde p_j y q_j son polinomios de grado menor o igual a 2.

i) Explicar como elegiría los nodos en cada rectángulo para garantizar que una función en V_h esté univocamente determinada por su valor en los nodos elegidos.

ii) Considere ahora el rectángulos de referencia $[0,1]^2$ y los nodos n_j , $1 \le j \le 6$ como se indica en la Figura. Hallar ϕ_i , $1 \le i \le 6$ las funciones en V_h que satisfacen $\phi_i(n_j) = \delta_{ij}$.



Ejercicio 14. Consideremos $\Omega \in \mathbb{R}^2$ un dominio con borde poligonal, y T_h una triangulación del mismo. Sea $K \subset T_h$ un triángulo de la partición. Llamamos:

 $h_K = \text{mayor de los lados de } K,$

 $\rho_K = \text{diámetro del círculo inscripto en } K$,

 $h = \max_{K \in T_h} h_K.$

Probar que la condición $\frac{h_K}{\rho_K} \leq \beta \quad \forall K \in T_h$ es equivalente a que exista $\theta_0 > 0$ tal que para cualquier ángulo θ de cualquier triángulo $K \in T_h$ se tiene $\theta \geq \theta_0$ (esta condición es conocida como "condición del ángulo mínimo").

Ejercicio 15. Sea Q un rectángulo en \mathbb{R}^2 , con lados paralelos a los ejes. Considerar una subdivisión C_h de Q en subrectángulos que no se solapan tal que ningún vértice de ningún rectángulo pertenece al lado de otro rectángulo. Sea V_h el conjunto de funciones continuas definidas en Q, bilineales en cada subrectángulo. Probar que un elemento de V_h está unívocamente determinado por su valor en los nodos de C_h (incluyendo los nodos en el borde de Q).

Ejercicio 16. Se desea aproximar

$$\int_{\hat{T}} f(\hat{x}) d\hat{x}$$

donde \hat{T} es el triángulo de referencia que tiene vértices (0,0),(1,0) y (0,1).

a) Mostrar que la fórmula de integración numérica

$$\int_{\hat{T}} f(\hat{x}) d\hat{x} \sim \frac{1}{2} f(\frac{1}{3}, \frac{1}{3})$$

es exacta para polinomios de grado menor o igual a 1.

b) Mostrar que la fórmula de integración numérica

$$\int_{\hat{T}} f(\hat{x})d\hat{x} \sim \frac{1}{6} \left(f(\frac{1}{2}, 0) + f(0, \frac{1}{2}) + f(\frac{1}{2}, \frac{1}{2}) \right)$$

es exacta para polinomios de grado menor o igual que 2.

Ejercicio 17. Sea T un triángulo genérico (no degenerado) de vértices a_1, a_2, a_3 . Sea $F(\hat{x}) = B\hat{x} + b$ la transformación afín que transforma \hat{T} en T. Usando el ejercicio 16 a) y haciendo un cambio de variables mostrar que la fórmula de cuadratura

$$\int_T f(x)dx \sim |T|f(a_{123}),$$

donde a_{123} es el baricentro del triángulo T, es exacta para polinomios de grado menor o igual que 1.

Ejercicio 18. Procediendo en forma análoga al ejercicio previo y usando el ejercicio 16 b), mostrar que la fórmula de cuadratura

$$\int_{T} f(x)dx \sim \frac{|T|}{3} (f(a_{12}) + f(a_{13}) + f(a_{23}))$$

donde a_{ij} , i < j denota el punto medio del lado de vértices a_i y a_j , es exacta para polinomios de grado menor o igual que 2.

Ejercicio 19. En forma análoga a los ejercicios previos mostrar que la fórmula de cuadratura

$$\int_{T} f(x)dx \sim \frac{|T|}{60} \left(3 \sum_{i=1}^{3} f(a_i) + 8 \sum_{1 \le i \le j \le 3} f(a_{ij}) + 27f(a_{123})\right)$$

es exacta para polinomios de grado menor o igual que 3.

Ejercicio 20. Considerar la triangulación del cuadrado $[0,1] \times [0,1]$ que se obtiene trazando las diagonales, y consiste de cuatro triángulos. Numerar los nodos de la siguiente manera: $N_1 = (0,0), N_2 = (1,0), N_3 = (1,1), N_4 = (0,1), N_5 = (\frac{1}{2}, \frac{1}{2})$. Hallar las matrices locales y la matriz de rigidez que resultan al resolver el problema del ejercicio 3 usando elementos finitos lineales.

Ejercicio 21. Considerar la subdivisi Ûn del cuadrado $[0,1] \times [0,1]$ que se obtiene trazando dos rectas paralelas a los ejes, y consiste de cuatro cuadrados. Numerar los nodos de la siguiente manera: $N_1 = (0,0), N_2 = (1,0), N_3 = (1,1), N_4 = (0,1), N_5 = (\frac{1}{2},\frac{1}{2}), N_6 = (1/2,0), N_7 = (1,1/2), N_8 = (1/2,1), N_9 = (0,1/2)$. Hallar la solución del sistema variacional discreto del ejercicio 2 con f = 1, usando elementos finitos bilineales . **Ejercicio 22.** Hacer un programa para resolver la ecuación de Poisson $-\Delta u = f$ con condición de borde $u|_{\partial\Omega} = 0$, en un polígono convexo Ω usando elementos finitos lineales (dando como dato de entrada los nodos de la triangulación). Calcular el error $||u - u_h||$ en diversas normas y graficar en función de h.

Ejercicio 23. Hacer un programa para resolver la ecuación $-\Delta u + u = f$ con condición de borde $u|_{\partial\Omega} = g$, en un polígono convexo Ω usando elementos finitos lineales (dando como dato de entrada los nodos de la triangulación). Calcular el error $||u-u_h||$ en diversas normas y graficar en función de h.