Práctica 1

Introducción

1. Extensión y unicidad de medidas

Definición. Sea Ω un conjunto y sea \mathcal{S} una clase de subconjuntos de Ω . Decimos que \mathcal{S} es una semiálgebra sobre Ω si verifica las siguientes condiciones:

- (a) $\emptyset \in \mathcal{S} \ y \ \Omega \in \mathcal{S}$
- (b) $A, B \in \mathcal{S} \Longrightarrow A \cap B \in \mathcal{S}$
- (c) $A \in \mathcal{S} \Longrightarrow A^c = \bigcup_{i=1}^n A_i \text{ con } A_1, \dots, A_n \in \mathcal{S} \text{ disjuntos.}$

Definición. Sea Ω un conjunto y sea \mathcal{M} una clase de subconjuntos de Ω . Decimos que \mathcal{M} es una clase monótona sobre Ω si verifica las siguientes condiciones:

- (a) $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}$ y $A_n\subseteq A_{n+1}$ para todo $n\in\mathbb{N}\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{M}$.
- (b) $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}$ y $A_{n+1}\subseteq A_n$ para todo $n\in\mathbb{N}\Longrightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{M}$.
- 1. Sean Ω un conjunto y \mathcal{S} una semiálgebra sobre Ω . Probar que la clase

$$\mathcal{A}(\mathcal{S}) = \left\{ A \in \Omega : A = \bigcup_{i=1}^{n} A_i \text{ con } A_1, \dots, A_n \in \mathcal{S} \text{ disjuntos} \right\}$$

es un álgebra de subconjuntos de Ω .

- 2. Teorema de Extensión de Caratheodory-Hahn. Sean S una semiálgebra de conjuntos y μ una medida sobre S. Probar que μ admite una extensión a $\sigma(S)$.
- 3. Teorema de la clase monótona. Dado un álgebra de conjuntos \mathcal{A} consideremos $\mathcal{M}(\mathcal{A})$ y $\sigma(\mathcal{A})$ la clase monótona y σ -álgebra generadas por \mathcal{A} , respectivamente. Mostrar que

$$\mathcal{M}(\mathcal{A}) = \sigma(\mathcal{A}).$$

- 4. Sean Ω un conjunto y \mathcal{S} una semiálgebra sobre Ω . Probar que si dos medidas sobre $(\Omega, \sigma(\mathcal{S}))$ cualesquiera coinciden en \mathcal{S} entonces también coinciden en $\sigma(\mathcal{S})$.
- 5. a) Probar que en el Teorema de Extensión de Caratheodory-Hahn la extensión resulta única si la medida μ es σ -finita sobre \mathcal{S} .
 - b) Mostrar con un ejemplo que la unicidad de la extensión puede no ser cierta si la medida μ no es σ -finita sobre \mathcal{S} .

2. Teorema $\pi - \lambda$ de Dynkin

Definición. Sea Ω un conjunto y sea \mathcal{P} una clase de subconjuntos de Ω . Decimos que \mathcal{P} es un π -sistema si es cerrada por intersecciones finitas.

Definición. Sea Ω un conjunto y sea \mathcal{D} una clase de subconjuntos de Ω . Decimos que \mathcal{D} es un λ -sistema si verifica las siguientes condiciones:

- (a) $\Omega \in \mathcal{D}$
- (b) $A \in \mathcal{D} \Longrightarrow A^c \in \mathcal{D}$
- (c) $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}$ y $A_n\cap\mathcal{A}_m=\emptyset$ si $n\neq m\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{D}$.
- 1. Verificar que la condición (b) en la definición de λ -sistema puede ser sustituida por la condición

$$(b')$$
 $A, B \in \mathcal{D}$ y $A \subseteq B \Longrightarrow B \setminus A \in \mathcal{D}$.

- 2. Probar que toda clase \mathcal{C} que sea π -sistema y λ -sistema a la vez resulta una σ -álgebra.
- 3. **Teorema de Dynkin**. Sean \mathcal{P} un π -sistema y \mathcal{D} un λ -sistema tales que $\mathcal{P} \subseteq \mathcal{D}$. Probar que $\sigma(\mathcal{P}) \subseteq \mathcal{D}$.
- 4. Sea $(\Omega, \sigma(\mathcal{P}))$ un espacio medible donde $\mathcal{P} \subseteq \mathcal{P}(\Omega)$ y sean ν y μ dos medidas finitas definidas sobre $(\Omega, \sigma(\mathcal{P}))$ tales que $\mu(\Omega) = \nu(\Omega)$ y ambas coinciden sobre \mathcal{P} . Demuestre que si \mathcal{P} es un π -sistema entonces ν y μ coinciden sobre $\sigma(\mathcal{P})$.

3. Funciones de distribución y medidas inducidas

1. Sean $(\Omega_1, \mathcal{F}_1)$ y $(\Omega_2, \mathcal{F}_2)$ dos espacios medibles y sea P una probabilidad en $(\Omega_1, \mathcal{F}_1)$. Dada una función medible $X : \Omega_1 \to \Omega_2$ para $A \in \mathcal{F}_2$ definimos

$$P_X(A) := P(X^{-1}(A)).$$

- a) Demuestre que P_X es una probabilidad en $(\Omega_2, \mathcal{F}_2)$.
- b) Sea $f:\Omega_2\to\mathbb{R}$ una función medible. Probar que

$$f P_X$$
-integrable $\iff f(X) P$ -integrable

y que en este caso vale la igualdad

$$\int_{\Omega_2} f \ dP_X = \int_{\Omega_1} f(X) \ dP \ .$$

2. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y sea $Y: \Omega \to \mathbb{R}_{\geq 0}$ una variable aleatoria con $\int_{\Omega} Y \, dP = 1$. Definimos para $A \in \mathcal{F}$

$$\mu_Y(A) := \int_A Y \, dP$$

- a) Demostrar que μ_Y es una probabilidad en (Ω, \mathcal{F}) .
- b) Obtener para $f \mu_Y$ -integrable una expresión para $\int_{\Omega} f d\mu_Y$ en términos de la probabilidad P.

- 3. Sean (Ω, \mathcal{F}, P) un espacio de probabilidad, X una variable aleatoria definida sobre este espacio y $g: \mathbb{R} \to \mathbb{R}$ una función medible Borel. Mostrar que
 - a) Si X es una variable aleatoria discreta y g(X) es P-integrable entonces

$$\mathbb{E}(g(X)) = \sum_{x \in R_X} g(x) P(X = x)$$

b) Si X es una variable aleatoria absolutamente continua con función de densidad f_X y g(X) es P-integrable entonces

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}} g(x) f_X(x) \, dx.$$

- 4. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y sea X una variable aleatoria definida sobre este espacio.
 - a) i. Probar que

$$X$$
 discreta $\iff P_X \ll N_{A_Y}$

donde $N_{\mathcal{A}_X}$ denota la medida de contar sobre $\mathcal{A}_X = \{x \in \mathbb{R} : p_X(x) > 0\}$, el conjunto de átomos de X.

- ii. Mostrar que si X es discreta entonces la función de probabilidad puntual p_X coincide con la derivada de Radon-Nikodym $\frac{dP_X}{dN_{A_X}}$.
- b) i. Probar que

$$F_X$$
 absolutamente continua $\iff P_X \ll \mathcal{L}$

donde \mathcal{L} denota la medida de Lebesgue sobre $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- ii. Mostrar que si X es absolutamente continua entonces F_X' coincide con la derivada de Radon-Nikodym $\frac{dP_X}{d\mathcal{L}}$.
- 5. Sea $F: \mathbb{R} \to [0,1]$ una función de distribución.
 - a) Probar que existe una medida de probabilidad sobre el espacio medible $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ tal que bajo dicha probabilidad la función identidad es una variable aleatoria con función de distribución acumulada F.
 - b) Exhibir una variable aleatoria X definida sobre $([0,1], \mathcal{B}[0,1], \mathcal{L}|_{[0,1]})$ tal que su función de distribución acumulada sea F.
 - c) Probar que si X_1 y X_2 son variables aleatorias no necesariamente definidas en un mismo espacio de probabilidad y tales que su función de distribución acumulada coincide entonces $P_{X_1} = P_{X_2}$.
- 6. Probar que existe una variable aleatoria con función de distribución continua pero que no admite densidad.

Sugerencia: Considerar la función de Cantor-Lebesgue.

¹Una función $F: \mathbb{R} \to \mathbb{R}$ se dice absolutamente continua si es asbsolutamente continua en todo intervalo acotado $[a,b] \subseteq \mathbb{R}$.

²Cuando X es una variable aleatoria absolutamente continua su derivada de Radon-Nikodym $\frac{dP_X}{d\mathcal{L}}$ es denominada la función de densidad de X.

³En particular, esto muestra que para definir una distribución basta con dar la función de distribución acumulada asociada.