ALGEBRA LINEAL - 2do Cuatrimestre 2012

Práctica 6 - Variedades lineales

1. Para los distintos valores de $a \in \mathbb{R}$ determinar la dimensión de la variedad lineal

$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 + 3x_3 = 0, 2x_1 + x_2 + x_3 = 1, -x_1 + x_2 + ax_3 = 0\}.$$

- 2. Probar que cada uno de los siguientes conjuntos son variedades lineales y calcular su dimensión:
 - a) $\{P \in \mathbb{Q}_3[X] / P'(2) = 1\}$

- b) $\{A \in \mathbb{C}^{2 \times 2} / \operatorname{tr}(A) = 5\}$
- 3. a) Sea $L \subseteq \mathbb{R}^3$ la recta que pasa por los puntos (2, -1, 0) y (1, 3, -1). Hallar una variedad lineal de dimensión 2 que contenga a L. ¿Es única?
 - b) Sea $\Pi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 x_2 + x_3 = 1\}$ y sea $L = \langle (0, 1, 1) \rangle + (1, 1, 0)$. Hallar un plano $\Pi' \subseteq \mathbb{R}^3$ tal que $\Pi' \cap \Pi = L$. ¿Es único?
- 4. Hallar ecuaciones implícitas para las siguientes variedades lineales:
 - a) $\langle (1,2,1), (2,0,1) \rangle + (1,1,1) \subset \mathbb{R}^3$.
 - b) la recta de \mathbb{R}^3 paralela al eje z que pasa por el punto (1,2,3).
 - c) la mínima variedad lineal en \mathbb{R}^4 que contiene a (1,1,2,0), (2,1,1,0) y (-1,0,4,1).
 - d) la recta en \mathbb{R}^3 perpendicular al plano $\langle (1,1,0),(0,1,-2)\rangle + (1,0,2)$ que pasa por (1,1,1).
 - e) una recta en \mathbb{R}^3 perpendicular a la recta $\langle (1,-2,1) \rangle + (3,5,7)$ que pasa por (1,9,-3). ¿Es única?
- 5. a) Decidir si los puntos (1,1,1), (-2,0,1) y (3,0,2) son colineales.
 - b) Decidir si los puntos (8,2,4), (4,2,8), (-2,0,1) y (1,-1,3) son coplanares.
- 6. Sea $L = \langle (2,1,1) \rangle + (0,-1,1) \subset \mathbb{R}^3$.
 - a) Hallar un plano Π tal que $L \subseteq \Pi$ y $0 \in \Pi$.
 - b) ¿Existirá un plano Π' tal que $L \subseteq \Pi'$, $0 \in \Pi'$ y $(0,0,1) \in \Pi'$ simultáneamente?
- 7. a) Hallar en \mathbb{R}^3 dos rectas alabeadas que pasen por (1,2,1) y (2,1,1) respectivamente.
 - b) Hallar en \mathbb{R}^4 dos planos alabeados que pasen por (1,1,1,0) y (0,1,1,1) respectivamente.
 - c) ¿Hay planos alabeados en \mathbb{R}^3 ? Más generalmente, si V es un K-espacio vectorial de dimensión n y M_1 y M_2 son variedades lineales alabeadas en V, ¿qué se puede decir de sus dimensiones?
- 8. a) Sea $L_1 = \langle (2,1,0) \rangle + (0,0,1)$. Hallar una recta $L_2 \parallel L_1$ que pase por el punto (-1,3,0).
 - b) Si L_1 y L_2 son las rectas de a), hallar un plano $\Pi \subseteq \mathbb{R}^3$ tal que $L_1 \subseteq \Pi$ y $L_2 \subseteq \Pi$ simultáneamente. Es Π único?
 - c) Hallar un plano $\Pi' \subseteq \mathbb{R}^3$ tal que $\Pi \cap \Pi' = L_1$.
- 9. En cada uno de los siguientes casos, decidir si las variedades lineales M_1 y M_2 se cortan, son paralelas o alabeadas. En cada caso, hallar $M_1 \cap M_2$, $M_1 \vee M_2$ y calcular todas las dimensiones:

- a) $M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 x_3 = 1\}, M_2 = \langle (1, 0, 1) \rangle + (0, 0, -3).$
- b) $M_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 x_2 1 = x_3 + x_4 = 0\},\ M_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 x_2 = x_2 + x_3 + x_4 1 = 0\}.$
- c) $M_1 = \langle (1,0,-1) \rangle + (-1,1,2), M_2 = \langle (-1,1,2) \rangle + (1,0,-1).$
- d) $M_1 = \langle (1,2,1,0), (1,0,0,1) \rangle + (1,2,2,-1), M_2 = \langle (1,0,1,1), (2,2,1,0) \rangle + (-1,4,2,-3).$
- 10. Sean $L_1 = \langle (1,1,1) \rangle + (0,2,0)$ y $L_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 x_3 = x_1 x_2 + x_3 = 1\}.$
 - a) Hallar planos Π_1 y Π_2 de \mathbb{R}^3 tales que $L_1 \subseteq \Pi_1$, $L_2 \subseteq \Pi_2$ y $\Pi_1 \parallel \Pi_2$ simultáneamente.
 - b) Hallar $L_1 \cap L_2$ y $L_1 \vee L_2$ y calcular sus dimensiones.
- 11. Sean $L_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 3x_3 = 0, x_2 x_3 = -2\}$ y $L_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 6x_3 = 1, x_2 + 2x_3 = 0\}$. Hallar una recta $L \subseteq \mathbb{R}^3$ que pase por el punto (1, 0, 2) y corte a L_1 y a L_2 .
- 12. Sea $p:\mathbb{R}^3\to\mathbb{R}^3$ la proyección ortogonal, para el producto interno canónico, sobre el subespacio $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 - x_2 = 0\}.$
 - a) Encontrar una recta $L \subset \mathbb{R}^3$ tal que p(L) = (1,2,1). ¿Es única?
 - b) Encontrar una recta $L_1 \subset \mathbb{R}^3$ tal que $p(L_1) = L_2$ siendo $L_2 : \begin{cases} 2x_1 x_2 = 0 \\ x_1 x_3 = 0 \end{cases}$. ¿Es única?
- 13. Sean L_1 y L_2 las rectas de \mathbb{R}^2 de ecuaciones x-y=1 y x+y=3 respectivamente.
 - a) Calcular el ángulo entre L_1 y L_2 .
 - b) Hallar una recta L_3 tal que $\angle(L_1, L_3) = \angle(L_2, L_3)$ y $L_1 \cap L_2 \in L_3$.
- 14. Sean $L_1 = \langle (1, -2, 1) \rangle + (0, 0, -2)$ y L_2 la recta que pasa por (1, 4, 2) y (0, 2, -1) en \mathbb{R}^3 . Determinar el ángulo entre L_1 y L_2 .
- 15. Sea la recta $L = \langle (1, -1, 1) \rangle + (2, 1, 0) \subset \mathbb{R}^3$. Encontrar un plano $\Pi \subset \mathbb{R}^3$ tal que $(2, 1, 0) \in \Pi$ $y \angle (L, \Pi) = \frac{\pi}{4}$.
- 16. Calcular la distancia entre:
 - a) la recta ((1,1)) + (3,0) y el punto (-1,1).
 - b) la recta $\langle (1,1,0) \rangle + (3,0,0)$ y el punto (-1,1,0),
 - c) el plano que pasa por (1,2,1) y tiene vector normal (1,-1,2) y el punto (1,2,5),
 - d) la recta $\langle (2,-2,-3) \rangle + (0,2,2)$ y el punto (0,-2,-1).
 - e)la recta $\left\{ \begin{array}{ll} x_1-x_2+x_3=1\\ 2x_1-3x_4=2 \end{array} \right.$ y el punto (0,2,0,-1),
 - f) los planos de ecuación $x_1 2x_2 + x_3 = 1$ y $x_1 2x_2 + x_3 = 3$,
 - g) el plano de ecuación x + y + z = 1 y la recta $\langle (-1,0,1) \rangle + (1,1,2)$,
 - h) las rectas L_1 : $\begin{cases} 2x y z = 4 \\ 4x y 2z = 9 \end{cases}$ y L_2 : $(x, y, z) = \langle (1, 0, 2) \rangle + (1, 2, -3),$
i) las rectas L_1 : $\begin{cases} x + z = 5 \\ 2x + y + 4z = 11 \end{cases}$ y L_2 = $\langle (1, 1, -1) \rangle + (0, 2, 1).$

- 17. a) Sea en \mathbb{R}^2 la recta L que pasa por los puntos (2,-1) y (5,3). Determinar una recta $L' \parallel L$ tal que d(L,L')=2. ¿Es única?
 - b) Sean $\Pi_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 x_2 + x_3 = 1\}$ y $\Pi_2 = \langle (0, 1, 1), (1, 0, -2) \rangle + (1, 1, 1)$. Hallar un plano Π tal que $\Pi \parallel \Pi_1$, $\Pi \parallel \Pi_2$ y $d(\Pi, \Pi_1) = d(\Pi, \Pi_2)$.
- 18. Sean en \mathbb{R}^3 la recta $L = \langle (1,2,-2) \rangle + (0,2,0)$ y el punto P = (1,2,2). Encontrar ecuaciones implícitas de una recta L' ortogonal a L tal que d(P,L') = 3 y $L \cap L' = \emptyset$. ¿Es única?
- 19. Sea $L = \langle (3,0,-4) \rangle + (1,-1,0)$. Hallar una recta L' alabeada con L, tal que d(L,L') = 2.
- 20. Encontrar los puntos de la recta $\langle (1,-1,0) \rangle + (2,1,-1)$ que están a distancia 6 de (2,1,-1).
- 21. Sean A=(1,1,2) y B=(2,0,2). Sea $\Pi=\{(x_1,x_2,x_3)\in\mathbb{R}^3\,/\,x_1+x_2=2\}$. Hallar $C\in\Pi$ tal que A,B y C formen un triángulo equilátero. ¿Es única la solución ? ¿Por qué?
- 22. Sean en \mathbb{R}^3 los puntos $P_1 = (1, -1, 0)$ y $P_2 = (1, 1, 1)$. Encontrar tres planos H distintos tales que $d(P_1, H) = d(P_2, H)$.
- 23. Dado en \mathbb{R}^2 el triángulo de vértices $A=(2,-3),\,B=(8,5)$ y C=(14,11), hallar la longitud de la altura que pasa por el vértice A.
- 24. Se consideran en \mathbb{R}^2 los puntos O=(0,0), P=(a,b) y Q=(c,d). Dichos puntos forman un triángulo isósceles con base \overline{PQ} . Probar que la altura correspondiente a la base corta a ésta en su punto medio.
- 25. Sean en \mathbb{R}^3 la recta $L = \langle (1,1,2) \rangle$ y el punto P = (1,0,-2). Encontrar un plano H ortogonal a L tal que $d(P,H) = \sqrt{6}$.
- 26. Sean A_1 , A_2 y A_3 en \mathbb{R}^3 tres puntos no alineados.
 - a) Probar que el conjunto $L = \{A \in \mathbb{R}^3 / d(A, A_1) = d(A, A_2) = d(A, A_3)\}$ es una recta ortogonal al plano que contiene a A_1 , A_2 y A_3 .
 - b) Calcular L en el caso $A_1 = (1, -1, 0), A_2 = (0, 1, 1)$ y $A_3 = (1, 1, 2)$.
- 27. Dado el triángulo PQR, se llama mediana correspondiente al vértice P a la recta que pasa por dicho vértice y por el punto medio del lado \overline{QR} . Se considera en \mathbb{R}^2 el triángulo cuyos vértices son P = (0,0), Q = (c,0) y R = (a,b).
 - a) Probar que sus tres medianas se cortan en un punto M.
 - b) Probar que si d(M, P) = d(M, Q) = d(M, R), el triángulo PQR es equilátero.
- 28. (*Teorema de Thales*) Sean en \mathbb{R}^2 las rectas dadas por las ecuaciones $L_1: x_2 = 0, \ L_2: x_2 = \alpha$ y $L_3: x_2 = \beta$, con α y β dos números no nulos y distintos entre sí. Sean L y L' dos rectas transversales a L_1, L_2 y L_3 . Probar que

$$\frac{d(L_1 \cap L, L_2 \cap L)}{d(L_2 \cap L, L_3 \cap L)} = \frac{d(L_1 \cap L', L_2 \cap L')}{d(L_2 \cap L', L_3 \cap L')}$$