Algebra I

2do. Cuatrimestre 2012

Práctica 7 - Polinomios

- 1. Calcular el coeficiente de X^{20} de f en los casos
 - (a) $f = (X 3)^{133}$.
 - (b) $f = (X-1)^4(X+5)^{19} + X^{33} 5X^{20} + 7$.
 - (c) $f = (X^5 + 4)^7 (X + 1)^{25} 3$.
 - (d) $f = X^{18}(X^4 + 2X 3)^{13} + 3(X^5 2)^7 X^{19}(2X^6 + 7X^2 + 5X 3)^{10}$.
- 2. Calcular el grado y el coeficiente principal de f en los casos
 - (a) $f = (4X^6 2X^5 + 3X^2 2X + 7)^{77}$.
 - (b) $f = (-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$.
 - (c) $f = (-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$.
- 3. Hallar, cuando existan, todos los $f \in \mathbb{C}[X]$ tales que

i)
$$f^2 = Xf + X + 1$$

ii)
$$f^2 - Xf = -X^2 + 1$$

iii)
$$(X+1)f^2 = X^3 + Xf$$

iv)
$$f \neq 0$$
 y $f^3 = \operatorname{grado}(f) \cdot X^2 f$

- 4. Hallar el cociente y el resto de la división de f por g en los casos
 - (a) $f = 5X^4 + 2X^3 X + 4$, $g = X^2 + 2$.
 - (b) $f = 8X^4 + 6X^3 2X^2 + 14X 4$, $q = 2X^3 + 1$.
 - (c) $f = 8X^4 + 6X^3 2X^2 + 14X 4$, g = 2X + 1.
 - (d) $f = 6X^5 + 3X^2 9X + 1$, g = 3X + 2.
 - (e) $f = X^9 3X^7 + X^6 2X^5 + 3X^3 X^2 + 3$, $g = X^5 + 4X 1$.
- 5. Determinar todos los $a \in \mathbb{C}$ tales que
 - (a) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$.
 - (b) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.
 - (c) El resto de la división de $X^5 3X^3 X^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.

Definición: Sea $\mathbf{K} = \mathbb{Q}$, \mathbb{R} ó \mathbb{C} . Dados $f, g, h \in \mathbf{K}[X]$ decimos que f es congruente a g módulo h si $h \mid f - g$. En tal caso escribimos $f \equiv g \pmod{h}$.

- 6. Sea $\mathbf{K} = \mathbb{Q}$, \mathbb{R} ó \mathbb{C} y sea $h \in \mathbf{K}[X]$. Probar que si $f, g, p, q \in \mathbf{K}[X]$ entonces
 - (a) $f \equiv f \pmod{h}$.
 - (b) Si $f \equiv g \pmod{h}$ entonces $g \equiv f \pmod{h}$.
 - (c) Si $f \equiv g \pmod{h}$ y $g \equiv p \pmod{h}$ entonces $f \equiv p \pmod{h}$.
 - (d) Si $f \equiv g \pmod{h}$ y $p \equiv q \pmod{h}$ entonces $f + p \equiv g + q \pmod{h}$ y $f \cdot p \equiv g \cdot q \pmod{h}$.
 - (e) Si $f \equiv g \pmod{h}$ entonces $f^n \equiv g^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - (f) r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 ó $\operatorname{grado}(r) < \operatorname{grado}(h)$.
- 7. Hallar el resto de la división de f por h en los casos
 - (a) $f = X^{353} X 1$, $h = X^{31} 2$.

- (b) $f = X^{45} + X^{28} X^{13} + 3$, $h = X^{17} + 5$.
- (c) $f = X^{1000} X^{40} + 11X^{20} + 12X^2 2$, $h = X^6 + 1$.
- (d) $f = X^{200} 3X^{101} + 2$, $h = X^{100} X + 1$.
- 8. (a) Sea $f \in \mathbb{Z}[X]$ y sean $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$. Probar que si $a \equiv b \pmod{m}$ entonces $f(a) \equiv f(b) \pmod{m}$.
 - (b) Probar que no existe $f \in \mathbb{Z}[X]$ tal que f(3) = 4 y f(-2) = 7.
- 9. Hallar todos los $f \in \mathbb{Z}[X]$ tales que:
 - (a) f es mónico de grado 3 y $f(\sqrt{2}) = 5$;
 - (b) f es mónico de grado 3 y f(1) = -f(-1).
- 10. (a) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 3 cuyas únicas raíces complejas sean 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
 - (b) Hallar todos los $f \in \mathbb{Z}[X]$ de grado 3 cuyas únicas raíces complejas sean 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
 - (c) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 4 cuyas únicas raíces complejas sean 1, $-\frac{1}{2}$ y $\frac{3}{5}$
- 11. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 2X^2 X + 2$.
- 12. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n 5X^2 + 2X + 1$ por $X^3 X$.
- 13. Sea $n \in \mathbb{N}$, sea $\mathbf{K} = \mathbb{Q}$, \mathbb{R} ó \mathbb{C} y sea $a \in \mathbf{K}$. Probar que
 - (a) $X a \mid X^n a^n$.
 - (b) Si n es impar entonces $X + a \mid X^n + a^n$.
 - (c) Si *n* par entonces $X + a \mid X^n a^n$.
- 14. Calcular el máximo común divisor entre f y g y escribirlo como combinación lineal de f y g siendo
 - (a) $f = X^5 + X^3 6X^2 + 2X + 2$, $q = X^4 X^3 X^2 + 1$.
 - (b) $f = X^6 + X^4 + X^2 + 1$, $g = X^3 + X$.
 - (c) $f = X^5 + X^4 X^3 + 2X 3$, $q = X^4 + 2X + 1$.
- 15. (a) Sean $f,g\in\mathbb{C}[X]$ y sea $a\in\mathbb{C}$. Probar que a es raíz de f y de g si y sólo si a es raíz de (f:g).
 - (b) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz común con $X^4 + 3X^3 3X + 1$.
- 16. (a) Hallar todas las raíces racionales de
 - i. $2X^5 + 3X^4 + 2X^3 X$.
 - ii. $X^5 \frac{1}{2}X^4 2X^3 + \frac{1}{2}X^2 \frac{7}{2}X 3$.
 - iii. $3X^4 + 8X^3 + 6X^2 + 3X 2$.
 - (b) Probar que $X^4 + 2X^3 3X^2 2$ no tiene raíces racionales.
- 17. (a) Hallar todas las raíces complejas de $f = X^5 4X^4 X^3 + 9X^2 6X + 1$ sabiendo que $2 \sqrt{3}$ es raíz de f.
 - (b) Hallar $f \in \mathbb{Q}[X]$ mónico de grado mínimo que tenga a $1 + 2\sqrt{5}$ y a $3 \sqrt{2}$ como raíces.
 - (c) Sea $f \in \mathbb{Q}[X]$ un polinomio de grado 5. Probar que si $\sqrt{2}$ y $1+\sqrt{3}$ son raíces de f entonces f tiene una raíz racional.
 - (d) Sea $f \in \mathbb{Q}[X]$ tal que $f(1+\sqrt{2}) = 3$, $f(2-\sqrt{3}) = 3$ y $f(1+\sqrt{5}) = 3$. Calcular el resto de la división de f por $(X^2 2X 1)(X^2 4X + 1)(X^2 2X 4)$.

18. Sea $n \in \mathbb{N}$ y sean $a_0, a_1, \dots, a_n, b_0, b_1, \dots, b_n \in \mathbb{C}$ tales que $a_j \neq a_k$ si $j \neq k$. Probar que

$$f = \sum_{k=0}^{n} b_k \left(\prod_{\substack{0 \le j \le n \\ j \ne k}} \frac{X - a_j}{a_k - a_j} \right)$$

es el único polinomio en $\mathbb{C}[X]$ que es nulo o de grado menor o igual que n y que satisface $f(a_k) = b_k$ para todo $0 \le k \le n$

- 19. Hallar $f \in \mathbb{Q}[X]$ de grado mínimo tal que
 - (a) f(1) = 3, $f(0) = \frac{1}{4}$, $f(\frac{1}{2}) = 3$ y f(-1) = 1.
 - (b) f(2) = 0, $f(-3) = \frac{1}{2}$, f(3) = -1 y f(-2) = 1.
- 20. Hallar todos los $f \in \mathbb{C}[X]$ tales que $X^3 f' = f^2$.
- 21. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^3 + 2X - 1,$$
 $f_{n+1} = Xf_n^2 + X^2f_n' \quad (n \in \mathbb{N})$

Probar que grado $(f_n) = 2^{n+1} - 1$ para todo $n \in \mathbb{N}$

- 22. Determinar la multiplicidad de a como raíz de f en los casos
 - (a) $f = X^5 2X^3 + X$, a = 1.
 - (b) $f = 4X^4 + 5X^2 7X + 2$, $a = \frac{1}{2}$.
 - (c) $f = X^6 3X^4 + 4$, a = i.
 - (d) $f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2.$
- 23. (a) Determinar todos los $a \in \mathbb{C}$ para los cuales $f = nX^{n+1} (n+1)X^n + a$ tiene todas sus raíces simples.
 - (b) Determinar todos los $a \in \mathbb{R}$ para los cuales $f = X^{2n+1} (2n+1)X + a$ tiene al menos una raíz múltiple.
- 24. Hallar todos los $a \in \mathbb{C}$ tales que $X^6 2X^5 + (1+a)X^4 2aX^3 + (1+a)X^2 2X + 1$ es divisible por $(X-1)^3$.
- 25. Hallar todos los $a \in \mathbb{C}$ tales que 1 sea raíz **doble** de $X^4 aX^3 3X^2 + (2+3a)X 2a$.
- 26. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} X^k$ tiene todas sus raíces simples.
- 27. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} \frac{X^k}{k!}$ tiene todas sus raíces simples.
- 28. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^4 + 2X^2 + 1,$$
 $f_{n+1} = (X - i)(f_n + f'_n) \quad (n \in \mathbb{N}).$

Probar que i es raíz **doble** de f_n para todo $n \in \mathbb{N}$.

- 29. Sea $f \in \mathbb{C}[X]$. Probar que $a \in \mathbb{C}$ es raíz múltiple de f si y sólo si es raíz de (f : f'). Deducir que si $f \in \mathbb{Q}[X]$ es irreducible entonces tiene todas sus raíces simples.
- 30. Factorizar el polinomio $X^4 X^3 + X^2 3X 6$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- 31. Factorizar el polinomio $X^4 6X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 32. Factorizar el polinomio $X^6 2$ en $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 33. Factorizar el polinomio $X^5 X^3 + 17X^2 16X + 15$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que 1 + 2i es raíz.
- 34. Factorizar el polinomio $X^5+2X^4+X^3+X^2-1$ en $\mathbb{Q}[X],\,\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que $-\frac{1}{2}+\frac{\sqrt{5}}{2}$ es raíz.
- 35. Hallar todos los $a \in \mathbb{C}$ tales que $f = X^4 (a+4)X^3 + (4a+5)X^2 (5a+2)X + 2a$ tenga a a como raíz **doble**. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 36. Factorizar el polinomio $f = X^6 + X^5 + 5X^4 + 4X^3 + 8X^2 + 4X + 4$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que $\sqrt{2}i$ es raíz múltiple de f.
- 37. Factorizar el polinomio $X^4 + 2X^3 + 3X^2 + 10X 10$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que tiene una raíz imaginaria pura.
- 38. Hallar todos los $a \in \mathbb{C}$ para los cuales al menos una de las raíces de

$$f = X^6 + X^5 - 3X^4 + 2X^3 + X^2 - 3X + a$$

sea una raíz sexta primitiva de la unidad. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- 39. Sean a, b y c las raíces complejas de $2X^3 3X^2 + 4X + 1$.
 - (a) Hallar

i)
$$a + b + c$$
 ii) $ab + ac + bc$ iii) abc iv) $a^2 + b^2 + c^2$ v) $a^3 + b^3 + c^3$ vi) $a^4 + b^4 + c^4$ vii) $a^2b^2 + a^2c^2 + b^2c^2$ viii) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ ix) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$

- (b) Encontrar un polinomio de grado 3 cuyas raíces sean $a+b,\ a+c$ y b+c.
- 40. Factorizar el polinomio $X^4 + X^3 3X^2 + 4X 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que la suma de tres de sus raíces es $-\frac{3}{2} + \frac{\sqrt{3}}{2}i$.
- 41. Hallar todas las raíces complejas del polinomio $X^6 X^5 7X^4 7X^3 7X^2 8X 6$ sabiendo que tiene dos raíces cuya suma es 2 y cuyo producto es -6.