Algebra I

2do. Cuatrimestre 2012

Práctica 1 - Conjuntos

Si A es un subconjunto de un conjunto referencial V, denotaremos por A' al complemento de A respecto de V. Por convención, si x es un número real positivo, \sqrt{x} denota el único número real positivo cuyo cuadrado es x.

1. Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}, -1\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

i) 3 \in A

ii) $\{1,2\} \subset A$

 $iii) \{1, 2\} \in A.$

iv) $\{3\} \subseteq A$

v) {{3}}} $\subseteq A$

 $vi) \emptyset \in A$.

 $vii)\{-1,2\}\subseteq A$

 $viii) \emptyset \subseteq A$

ix) $\{1, 2, -1\} \in A$.

2. Determinar si $A \subseteq B$ en cada uno de los siguientes casos

(a) $A = \{1, 2, \sqrt{9}\}$ $B = \{1, 2, \{3\}, -3\}.$

(b) $A = \{1, 2, 0, -1, -2\}$ $B = \{x \in \mathbb{R} \mid |x+3| \le 1\}.$

(c) $A = \{1, 2, \sqrt{9}\}$ $B = \{1, 2, 3, 4, 5\}.$

(d) $A = \{\emptyset\}$ $B = \emptyset$.

(e) $A = \{x \in \mathbb{R} / 2 < |x| < 3\}$ $B = \{x \in \mathbb{R} / x^2 < 3\}$

- 3. Dados los conjuntos $A = \{1, 3, 5, 7, 8, 11\}$ y $B = \{-1, 3 5, 7, -8, 11\}$, hallar $A \cap B$, $A \cup B$, B A y $A\triangle B$.
- 4. Dado el conjunto referencial $V = \{n \in \mathbb{N} \mid n \text{ es múltiplo de 15}\}$, hallar el complemento del subconjunto A de V definido por $A = \{n \in V \mid n \ge 132\}.$
- 5. Dado el conjunto referencial $V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$ y dados los subconjuntos $A = \{1, -2, 7, 3\}$, $B = \{1, \{3\}, 10\} \text{ y } C = \{-2, \{1, 2, 3\}, 3\} \text{ hallar}$

 $i)A \cap (B \triangle C)$ $iv)(A \cup B') \cap C$

 $ii)(A\triangle B)-C$

 $iii)(A-B)\cap C$

 $v)A' \cap B' \cap C'$

 $vi)(A-B')\triangle C$

- 6. En un grupo de 110 alumnos hay 63 alumnos que estudian inglés, 30 que estudian alemán y 50 que estudian francés. Sabiendo que hay 7 alumnos que estudian los tres idiomas, 30 que sólo estudian inglés, 13 que sólo estudian alemán y 25 que sólo estudian francés, determinar
 - (a) ¿Cuántos alumnos estudian exactamente dos idiomas?
 - (b) ¿Cuántos alumnos estudian inglés y alemán pero no francés?
 - (c) ¿Cuántos alumnos estudian alemán y francés pero no inglés?
 - (d) ¿Cuántos alumnos estudian inglés y francés pero no alemán?
 - (e) ¿Cuántos alumnos no estudian ningún idioma?
- 7. Sean A, B y C conjuntos. Representar en un diagrama de Venn

 $i)A \cap (B \cup C)$

 $ii)A \cup (B \cap C)$

 $iii)A' \cup (B \cap C)$

 $iv)(A \cup B') \cap C$

 $v)A\triangle(B\cup C)$

 $vi)(A\triangle B)\cap (C-A)$

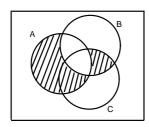
 $vii)A - (B'\triangle C)$

 $viii)A \cup (B\triangle C)$

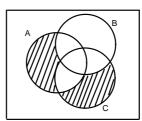
ix) $(A \cup B) \cap (A \cup C)$

8. Encontrar fórmulas que describan las partes rayadas de los siguientes diagramas de Venn, utilizando únicamente intersecciones, uniones y complementos.

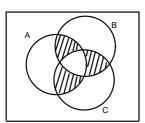
i)



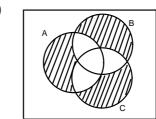
ii)



iii)



iv)



- 9. Determinar cuáles de las siguientes afirmaciones son verdaderas cualesquiera sean los conjuntos A, B y C y cuáles no. Para las que sean verdaderas, dar una demostración, para las otras dar un contraejemplo.
 - (a) $A \cup (B \cap C) = (A \cup B) \cap C$.
 - (b) $(A \cup B)' = A' \cap B'$.
 - (c) $A \triangle B \subseteq (A \triangle C) \cup (B \triangle C)$.
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - (e) $C \subseteq A \Longrightarrow B \cap C \subseteq (A \triangle B)'$.
 - (f) $A \triangle B = \emptyset \iff A = B$.
 - (g) $(A\triangle B) C = (A C)\triangle(B C)$.
 - (h) $A \triangle \emptyset = A$.
- 10. Sean A, B y C subconjuntos de un conjunto referencial V. Probar que
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (b) $(A \cap B)' = A' \cup B'$.
 - (c) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
 - (d) $A (B C) = (A B) \cup (A \cap C)$.
 - (e) $A (A \triangle B) = A \cap B$.
 - (f) $(A \cap C) B = (A B) \cap C$.
 - (g) $A \subseteq B \Longrightarrow A \triangle B = B \cap A'$.
 - (h) $A \subseteq B \iff B' \subseteq A'$.
 - (i) $C \subseteq A \Longrightarrow (A \cup B) \cap C' = (B C) \cup (A \triangle C)$.
 - (j) $A \cap C = \emptyset \Longrightarrow A \cap (B \triangle C) = A \cap B$.
- 11. (a) Hallar el conjunto $\mathcal{P}(A)$ de partes de A en los casos

$$i)A = \emptyset$$

$$(ii) A = \{1\}$$

$$(iii)A = \{a, b\}$$

$$\begin{array}{ll} i)A = \emptyset & ii)A = \{1\} & iii)A = \{a,b\} \\ iv)A = \{1,a,\{-1\}\} & v)A = \{1,\{1,2\}\} & vi)A = \{1,3,5,\emptyset\} \end{array}$$

$$v)A = \{1, \{1, 2\}\}$$

$$vi)A = \{1, 3, 5, \emptyset\}$$

- (b) ¿Qué relación existe entre la cantidad de elementos de A y la de su conjunto de partes?
- (c) Sean A y B conjuntos. Probar que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$.
- 12. (a) Sean $A = \{1, 2, 3\}, B = \{1, 3, 5, 7\}, C = \{a, b, c\}$. Hallar $A \times A, B \times C, (A \cap B) \times C, (A \cup B) \times C, (A \cup B) \times C, (A \cup B) \times C$
 - (b) Sean X e Y conjuntos. Si X tiene n elementos e Y tiene m elementos, ¿cuántos elementos tiene $X \times Y$?
 - (c) Sean A, B y C conjuntos. Probar que

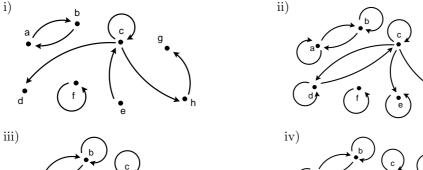
$$i)(A \cup B) \times C = (A \times C) \cup (B \times C)$$
 $ii)(A \cap B) \times C = (A \times C) \cap (B \times C)$ $ii)(A \cap B) \times C = (A \times C) \cap (B \times C)$ $iv)(A \triangle B) \times C = (A \times C) \triangle (B \times C)$

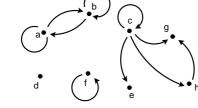
- 13. Si A es un conjunto con n elementos y B es un conjunto con m elementos, ¿cuántas relaciones de A en B hay?
- 14. Sea $A = \{1, 2, 3, 4, 5, 6\}$. Graficar la relación

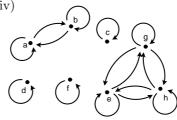
$$\mathcal{R} = \{(1,1), (1,3), (3,1), (3,3), (6,4), (4,6), (4,4), (6,6)\}$$

dibujando 6 puntos en el plano que representen cada uno de los elementos de A y una flecha de a a b para cada $(a,b) \in \mathcal{R}$. Viendo el gráfico determinar si \mathcal{R} es reflexiva, simétrica, antisimétrica o transitiva.

15. Sea $A = \{a, b, c, d, e, f, g, h\}$. Para cada uno de los siguientes gráficos describir por extensión la relación en A que representa y determinar si es reflexiva, simétrica, antisimétrica o transitiva.

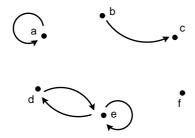






- 16. En cada uno de los siguientes casos determinar si la relación \mathcal{R} en A es reflexiva, simétrica, antisimétrica, transitiva, de equivalencia o de orden.
 - (a) $A = \{1, 2, 3, 4, 5\}, \mathcal{R} = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}.$
 - (b) $A = \{1, 2, 3, 4, 5\}, \mathcal{R} = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 3), (2, 5), (1, 5)\}.$
 - (c) $A = \{1, 2, 3, 4, 5, 6\}, \mathcal{R} = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}.$
 - (d) $A = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{N} / a + b \text{ es par}\}.$

- (e) $A = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{N} / a + b \text{ es impar}\}.$
- (f) $A = \mathbb{Z}$, $\mathcal{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} / |a| \le |b|\}$.
- (g) $A = \mathcal{P}(\mathbb{R})$, \mathcal{R} definida por $A \mathcal{R} B \iff 2 \notin A B$.
- (h) $A = \mathcal{P}(\mathbb{R})$, \mathcal{R} definida por $A \mathcal{R} B \iff A \cap \{1, 2, 3\} \subseteq B \cap \{1, 2, 3\}$.
- (i) $A = \mathbb{Z}$, \mathcal{R} definida por $a \mathcal{R} b \iff a + 3b$ es divisible por 4.
- (j) $A = \mathbb{N}$, \mathcal{R} definida por $a \mathcal{R} b \iff b$ es múltiplo de a.
- 17. Dar un ejemplo de una relación en \mathbb{R} que:
 - (a) sea simétrica y antisimétrica.
 - (b) no sea ni simétrica ni antisimétrica.
 - (c) sea simétrica y transitiva pero no reflexiva.
 - (d) sea reflexiva y simétrica pero no transitiva.
 - (e) sea de equivalencia y de orden.
- 18. Sea $A = \{a, b, c, d, e, f\}$ y sea \mathcal{R} la relación en A representada por el gráfico



- 19. ¿Cuál es la mínima cantidad de pares que se deben agregar a $\mathcal R$ de manera que la nueva relación obtenida sea
 - (a) reflexiva,
 - (b) simétrica,
 - (c) transitiva,
 - (d) reflexiva y simétrica,
 - (e) simétrica y transitiva,
 - (f) reflexiva y transitiva,
 - (g) de equivalencia.
- 20. Dado el conjunto $A = \{a, b, c, d, e, f, g\}$ encuentre una relación de orden \mathcal{R} en A que tenga 12 elementos y que verifique $(a, b) \in \mathcal{R}$, $(e, a) \in \mathcal{R}$ y $(c, d) \notin \mathcal{R}$. ¿Es única?
- 21. Sea $A = \{a, b, c, d, e, f\}$. Dada la relación de equivalencia en A

$$\mathcal{R} = \{(a,a),(b,b),(c,c),(d,d),(e,e),(f,f),(a,b),(b,a),(a,f),(f,a),(b,f),(f,b),(c,e),(e,c)\}$$

hallar

- (a) la clase de b,
- (b) la clase de c,
- (c) la clase de d,

- (d) la partición asociada a \mathcal{R} .
- 22. Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Hallar y graficar la relación de equivalencia en A asociada a la partición $\{\{1,3\},\{2,6,7\},\{4,8,9,10\},\{5\}\}.$
- 23. Hallar todas las particiones del conjunto $A = \{1, 2, 3\}$. ¿Cuántas relaciones de equivalencia pueden definirse en A?
- 24. (a) Determinar si \mathcal{R} es una función de A en B en los casos

```
i. A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, d), (4, b), (5, c)\},\
```

ii.
$$A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, a), (4, b), (5, c), (3, d)\},$$

iii.
$$A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, d), (4, b)\},\$$

iv.
$$A = \{1, 2, 3\}, B = \{a, b, c, d, e\}, \mathcal{R} = \{(1, a), (2, a), (3, e)\},\$$

v.
$$A = \mathbb{N}, B = \mathbb{R}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{R} / a = 2b - 3\},\$$

vi.
$$A = \mathbb{R}, B = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{R} \times \mathbb{N} / a = 2b - 3\},\$$

vii.
$$A = \mathbb{Z}, B = \mathbb{Z}, \mathcal{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a + b \text{ es divisible por 5}\},$$

viii.
$$A = \mathbb{N}, B = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{N} / b = a^2\},\$$

- (b) Para cada una de las relaciones de A en B definidas en a) que sean funciones hallar la imagen y determinar si es inyectiva, sobreyectiva o biyectiva.
- 25. Determinar si las siguientes funciones son inyectivas, sobreyectivas o biyectivas. Para las que sean biyectivas hallar la inversa y para las que no sean sobreyectivas hallar la imagen.

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = 12x^3 - 5$.

(b)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = 12x^2 - 5$.

(c)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $f(x,y) = x + y$.

(d)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$
, $f(x) = (2x, x^2, x - 7)$.

(e)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = \begin{cases} 2x & \text{si } x < 6, \\ x + 6 & \text{si } x \ge 6. \end{cases}$

(f)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
, $f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ n+1 & \text{si } n \text{ es impar.} \end{cases}$
(g) $f: \mathbb{N} \longrightarrow \mathbb{N}$, $f(n) = \begin{cases} n-1 & \text{si } n \text{ es par} \\ 2n & \text{si } n \text{ es impar.} \end{cases}$

(g)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
, $f(n) = \begin{cases} n-1 & \text{si } n \text{ es par} \\ 2n & \text{si } n \text{ es impar.} \end{cases}$

(h)
$$f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$
, $f(a,b) = 3a - 2b$.

(i)
$$f: \mathbb{Z} \longrightarrow \mathbb{Z}$$
, $f(a) = \begin{cases} a+1 & \text{si } a \text{ es par} \\ a-1 & \text{si } a \text{ es impar.} \end{cases}$

26. (a) Dadas las funciones

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

$$g: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

$$f(n) = \begin{cases} \frac{n^2}{2} & \text{si } n \text{ es divisible por 6} \\ 3n+1 & \text{en otro caso} \end{cases}$$

$$g(n,m) = n.(m+1)$$

calcular $(f \circ g)((3,4), (f \circ g)((2,5) \text{ y } (f \circ g)((3,2).$

(b) Dadas las funciones

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = \begin{cases} x^2 & \text{si } x \le 7 \\ 2x - 1 & \text{si } x > 7 \end{cases}$$

$$g: \mathbb{N} \longrightarrow \mathbb{R}$$

$$g(n) = \sqrt{n}$$

Hallar todos los $n \in \mathbb{N}$ tal que

i.
$$(f \circ g)(n) = 13$$
.

ii.
$$(f \circ g)(n) = 15$$
.

27. Hallar $f \circ g$ en los casos

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = 2x^2 - 18$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$, $g(x) = x + 3$.

(b)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x + 3$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$, $g(x) = 2x^2 - 18$

(c)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
, $f(n) = \begin{cases} n-2 & \text{si } n \text{ es divisible por } 4\\ n-1 & \text{si } n \text{ no es divisible por } 4, \end{cases}$
 $g: \mathbb{N} \longrightarrow \mathbb{N}$, $g(n) = 4n$.

(d)
$$f: \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$$
, $f(x) = (x+5, 3x)$
 $g: \mathbb{N} \longrightarrow \mathbb{R}$, $g(n) = \sqrt{n}$.

- 28. Hallar dos funciones $f: \mathbb{N} \longrightarrow \mathbb{N}$ y $g: \mathbb{N} \longrightarrow \mathbb{N}$ tales que $f \circ g = \mathrm{id}_{\mathbb{N}}$ y $g \circ f \neq \mathrm{id}_{\mathbb{N}}$, donde $\mathrm{id}_{\mathbb{N}}: \mathbb{N} \longrightarrow \mathbb{N}$ denota la función identidad.
- 29. Sean A, B y C conjuntos. Probar que si $f: B \longrightarrow C$ y $g: A \longrightarrow B$ son funciones entonces valen
 - (a) si $f \circ g$ es inyectiva entonces g es inyectiva.
 - (b) si $f \circ g$ es sobreyectiva entonces f es sobreyectiva.
 - (c) si f y g son inyectivas entonces $f \circ g$ es inyectiva.
 - (d) si f y g son sobreyectivas entonces $f \circ g$ es sobreyectiva.
 - (e) si f y g son biyectivas entonces $f \circ g$ es biyectiva.