PRÁCTICA 6: DIFERENCIACIÓN

Definiciones y notación: durante esta práctica se utilizarán las siguientes definiciones:

- $L^1_{loc}(\mathbb{R}^n)$ denotará el conjunto formado por aquellas funciones medibles que son integrables sobre todo compacto de \mathbb{R}^n .
- Para $f \in L^1_{loc}(\mathbb{R}^n)$, M(f) denotará la función maximal de Hardy-Littlewood centrada, definida por

$$M(f)(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| : Q \text{ un cubo centrado en } x \right\}.$$

Ejercicio 1. Probar que,

- (a) Si $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, entonces $f \in L^1_{loc}(\mathbb{R}^n)$.
- (b) Si $f \in L^1_{loc}(\mathbb{R}^n)$ entonces M(f) es semicontinua inferiormente.

Ejercicio 2. Para $f \in L^1_{loc}(\mathbb{R}^n)$ definimos,

$$M_Q(f)(x) = \sup \left\{ \frac{1}{|B|} \int_B |f| : B \text{ una bola que contiene a } x \right\}.$$

Probar que existen constantes A, B > 0 que dependen sólo de n, tales que

$$AM(f)(x) \leq M_Q(f)(x) \leq BM(f)(x)$$
, para toda $f \in L^1_{loc}(\mathbb{R}^n)$.

Ejercicio 3.

- (a) Sea $E \subset \mathbb{R}^n$ un conjunto medible con $diam(E) < +\infty$. Probar que existen constantes $c_1, c_2 > 0$ tales que $|E|c_1||x||^{-n} \leq M(\chi_E)(x) \leq |E|c_2||x||^{-n}$ para ||x|| grande.
- (b) Sea $f \in L^1_{loc}(\mathbb{R}^n)$ que satisface $|\{x \in \mathbb{R}^n : f(x) \neq 0\}| > 0$. Probar que existe c > 0 tal que $M(f)(x) \geq c||x||^{-n}$ para $||x|| \geq 1$. Deducir que $M(f) \notin L^1(\mathbb{R}^n)$, salvo que f = 0 en casi todo punto.

Ejercicio 4. Sea $f \in L^p(\mathbb{R}^n)$.

(a) Probar que si $1 \le p < \infty$, existe c > 0 que no depende de f tal que para todo $\alpha > 0$

$$|\{x \in \mathbb{R}^n : M(f)(x) > \alpha\}| \le \frac{c}{\alpha} \int_{\{x:|f(x)| > \alpha/2\}} |f(x)| dx.$$

(Sugerencia: Considerar $g = f\chi_{\{|f| \ge \alpha/2\}}$ y usar que $|f(x)| \le |g(x)| + \alpha/2$.)

(b) Probar que si $1 , entonces <math>M(f) \in L^p(\mathbb{R}^n)$. Además existe $c_p > 0$ que no depende de f tal que $||M(f)||_p \le c_p ||f||_p$.

Ejercicio 5. Sea $S = \{S_i : i \in I\}$ una familia de conjuntos medibles. Decimos que S se contrae regularmente a x si verifica

- (i) Para todo $\varepsilon > 0$ existe $S_i \in \mathcal{S}$ con diam $S_i < \varepsilon$.
- (ii) Existe una constante k > 0 tal que para todo $S_i \in \mathcal{S}$, si Q_i es el cubo más pequeño con centro en x que contiene a S_i , entonces $|Q_i| \leq k|S_i|$.

Notar que los conjuntos S_i no necesitan contener a x.

- (a) Probar que $\{B(x,r)\}_{r>0}$ se contrae regularmente a x
- (b) Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$, entonces en todo punto de Lebesgue de f

$$\frac{1}{|S|} \int_{S} |f(y) - f(x)| dy \to 0$$

para toda familia S que se contrae regularmente a x.

Ejercicio 6. Sea $\phi : \mathbb{R}^n \to \mathbb{R}$ medible y acotada tal que sop $(\phi) \subseteq \{x : ||x|| \le 1\}$ y $\int_{\mathbb{R}^n} \phi dx = 1$. Para cada $\varepsilon > 0$, sea $\phi_{\varepsilon}(x) = \varepsilon^{-n} \phi(x/\varepsilon)$. Probar que para toda $f \in L^1_{loc}(\mathbb{R}^n)$

$$\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x),$$

si x es un punto de Lebesgue de f.

Ejercicio 7. Sea $K: \mathbb{R}^n \to \mathbb{R}$ una función medible, acotada y de soporte compacto. Probar que existe una constante C > 0 tal que para toda función $f \in L^1_{loc}(\mathbb{R}^n)$ y para todo $x \in \mathbb{R}^n$ vale:

$$\sup_{\varepsilon>0} |f * K_{\varepsilon}(x)| \le CM(f)(x),$$

donde $K_{\varepsilon}(x) = \varepsilon^{-n} K(x/\varepsilon)$.

Ejercicio 8. Sea $f: \mathbb{R} \to \mathbb{R}$, definida por:

$$f(x) = \begin{cases} 0, & x = 0\\ x\sin(1/x), & x \neq 0. \end{cases}$$

Calcular los cuatro números de Dini f en $x_0 = 0$.

Ejercicio 9. Hallar $f:[0,1]\to\mathbb{R}$ creciente, continua y tal que,

$$\int_0^1 f'(x)dx < f(1) - f(0).$$

Ejercicio 10. Sea $g:[a,b]\to\mathbb{R}$ estrictamente creciente y absolutamente continua con g(a)=c y g(b)=d. Probar que,

- (a) Si $G \subseteq [c,d]$ es abierto, entonces $|G| = \int_{g^{-1}(G)} g'(x) dx$.
- (b) Sea $H = \{x : g'(x) \neq 0\}$. Si $E \subseteq [c, d]$ y |E| = 0 entonces $g^{-1}(E) \cap H$ tiene medida nula.
- (c) Si $E \subseteq [c,d]$ es medible, entonces $F = g^{-1}(E) \cap H$ es medible y $|E| = \int_F g' = \int_a^b \chi_E(g(x))g'(x)dx$.

(d) Si f es medible y no negativa sobre [c,d], entonces $(f\circ g)g'$ es medible sobre [a,b] y $\int_c^d f(y)dy = \int_a^b f(g(x))g'(x)dx$.

Ejercicio 11. Sean $F:[a,b]\to\mathbb{R}$, absolutamente continua en [a,b], g integrable sobre [a,b] y

$$G(x) = G(a) + \int_{a}^{x} g(t)dt.$$

Probar que

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b G(x)F'(x)dx.$$

Ejercicio 12. Probar que si f es de variación acotada en [a, b], entonces f se puede escribir como f = g + h donde g es absolutamente continua en [a, b] y h es singular en [a, b]. Probar, además, que g y h son únicas salvo constantes aditivas.

Ejercicio 13. Sean $f_n:[a,b]\to\mathbb{R}, (n\in N)$ funciones monótonas crecientes tales que $\sum_{n=1}^{\infty}f_n(x)$ converge a un límite finito para todo $x\in[0,1]$. Sea f(x) el límite. Probar que f es derivable a.e. y $f'(x)=\sum_{n=1}^{\infty}f'_n(x)$ a.e.

Ejercicio 14. Sea $f:[a,b] \to \mathbb{R}$ una función de variación acotada. Sea $V:[a,b] \to \mathbb{R}$ definida por $V(x) := V_a^x(f)$. El objetivo de este ejercicio es probar que V' = |f'| a.e. Para eso se propone el siguiente plan.

- (a) Dada una partición $a = x_0 < \ldots < x_n = b$, existe una función $g : [a, b] \to \mathbb{R}$ tal que,
 - q(0) = 0,
 - para cada $0 \le j \le n-1$: $g(x_{j+1}) g(x_j) = |f(x_{j+1}) f(x_j)|$,
 - para cada $0 \le j \le n-1$: existe una constante $c_j \in \mathbb{R}$ tal que

$$g|_{[x_j,x_{j+1}]} = f|_{[x_j,x_{j+1}]} + c_j \text{ \'o } g|_{[x_j,x_{j+1}]} = -f|_{[x_j,x_{j+1}]} + c_j.$$

- (b) Probar que toda función g como en (a) verifica que
 - |g'| = |f'| a.e.,
 - $g(b) = \sum_{j=1}^{n-1} |f(x_{j+1}) f(x_j)|,$
 - V-g es monótona creciente.
- (c) Elegir una sucesión de funciones g_k como en (a) tales que $\sum_k V(x) g_k(x) < \infty$ para casi todo x y aplicar el ejercicio anterior.

Ejercicio 15. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Sea $V:[a,b]\to\mathbb{R}$ definida por $V(x):=V_a^x(f)$. Probar que,

- (a) f es continua si y sólo si V lo es.
- (b) f es absolutamente continua si y sólo si V lo es. Además en este caso,

$$V(x) = \int_a^x |f'(y)| dy$$
, para todo $x \in [a, b]$.

(c) $\int_a^b |f'| \leq V_a^b(f)$ y la igualdad vale si y sólo si f es absolutamente continua.

Ejercicio 16. Sea $f:[a,b]\to\mathbb{R}$ una función absolutamente continua. Probar que si $N\subseteq[a,b]$ tiene medida nula, entonces f(N) tiene medida nula. Concluir que la imagen por f de un conjunto medible es un conjunto medible.

(Pista: la imagen por f un un intervalo [c,d] es un intervalo de medida menor a la variación de f en [c,d]).