Análisis Complejo

Segundo Cuatrimestre — 2011

Práctica 4A: Ejercicios adicionales

- 1. Sea $\gamma(t)=e^{it}$, con $t\in[0,2\pi]$. Calcular:
- (a) $\int_{\gamma} \overline{z}(z+3) \cos z \, dz$,
- (b) $\int_{\gamma} \operatorname{sen} \overline{z} \, dz$.
- **2.** Sea $U\subseteq \mathbb{C}$ abierto, f holomorfa en U y $z_0\in U$. Si $f'(z_0)\neq 0$ y z_0 es el único cero de $f-f(z_0)$ en U, probar que:

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{f(z) - f(z_0)} = \frac{2\pi i}{f'(z_0)}$$

donde la circunferencia $|z-z_0|=r$ está contenida en U, y se recorre una vez en sentido positivo.

3. Sea $\gamma(t)=2e^{it}$, con $t\in[0,4\pi]$. Calcular:

$$\int_{\gamma} \frac{e^z + 1}{\operatorname{sen}(z+i)} \, \mathrm{d}z$$

4. Sea $\gamma(t)=2e^{it}$, con $t\in[0,2\pi]$, y sea $f:\mathbb{C}\mapsto\mathbb{C}$ dada por:

$$f(z) = \begin{cases} \frac{e^z - 1}{z} & z \neq 0\\ 1 & z = 0 \end{cases}$$

Demostrar que f no se anula en el interior de γ y calcular $\int_{\gamma} \frac{\mathrm{d}z}{e^z-1}$.