ÁLGEBRA III

Práctica 8 – Segundo Cuatrimestre de 2011

Ejercicio 1. Sean K un cuerpo, C/K una clausura algebraica de K y $f \in K[X]$ un polinomio mónico de grado $n \ge 1$. Si $f = (X - a_1) \dots (X - a_n)$ (con $a_i \in C$) se define el discriminante de f en la forma:

$$\Delta(f) = \prod_{i < j} (a_i - a_j)^2$$

- i) Probar que:
 - a) Si $f = X^2 + bX + c$, entonces $\Delta(f) = b^2 4c$.
 - b) Si $f = X^3 + bX + c$, entonces $\Delta(f) = -4b^3 27c^2$.
- ii) Sea E/\mathbb{Q} una extensión de grado n de \mathbb{Q} . Sea a tal que $E=\mathbb{Q}(a)$ y sea $f=f(a,\mathbb{Q})$. Probar que $\Delta(f) = (-1)^{\frac{n(n-1)}{2}} N_{E/\mathbb{Q}}(f'(a))$, donde f' es el polinomio derivado de f.

Ejercicio 2. Sea $n \in \mathbb{N}$, $n \geq 2$. Probar que si $f = X^n + bX + c \in \mathbb{Q}[X]$, entonces $\Delta(f) = x^n + bX + c \in \mathbb{Q}[X]$ $(-1)^{\frac{n(n-1)}{2}}(n^nc^{n-1}+(1-n)^{n-1}b^n).$

Ejercicio 3. Sea E/\mathbb{Q} un cuerpo de descomposición de X^3+X+1 . Probar que el polinomio $X^4 - 6X^2 + 40$ es reducible en E[X].

Ejercicio 4. Sea $p \in \mathbb{N}$ primo, $p \neq 2$. Determinar la única subextensión cuadrática de $\mathbb{Q}(\xi_p)/\mathbb{Q}$.

Ejercicio 5.

- i) Demostrar que toda extensión cuadrática de Q está contenida en una extensión ciclotómica.
- ii) En cada uno de los siguientes casos, exhibir una extensión ciclotómica E/\mathbb{Q} tal que $F\subseteq E$:

- a) $F=\mathbb{Q}[\sqrt{6}\,]$ c) $F=\mathbb{Q}[\sqrt{-21}\,]$ b) $F=\mathbb{Q}[\sqrt{2}\,,\,\sqrt{7}\,]$ d) F/\mathbb{Q} cuerpo de descomposición de $X^{10}+3X^8-X^2-3$

Ejercicio 6. Sea $p \in \mathbb{Z}$ primo y sea E un cuerpo de descomposición del polinomio $f = \mathbb{Z}$ $X^5 + pX^3 + p$ sobre \mathbb{Q} . Probar que $G(E, \mathbb{Q})$ contiene subgrupos de orden 2 no invariantes.

Ejercicio 7. Sean $E = K(t_1, t_2, t_3, t_4)$ y $F = K(s_1, s_2, s_3, s_4)$, donde $\{t_1, t_2, t_3, t_4\}$ es una familia algebraicamente independiente sobre K y $\{s_1, s_2, s_3, s_4\}$ es el conjunto de polinomios simétricos elementales en t_1, t_2, t_3, t_4 .

- i) Probar que $F(t_1 + t_2)/F$ es una subextensión no normal de E/F y calcular su grado.
- ii) Sean i, j tales que $1 \le i < j \le 4$. Probar que $t_i + t_j \in F(t_1 + t_2)$ si y sólo si i = 1, j = 2 o i = 3, j = 4.
- iii) Caracterizar $G(F(t_1 + t_2)/F)$.

Ejercicio 8. Sea $\{t_1, \ldots, t_n\}$ una familia algebraicamente independiente sobre un cuerpo K y sea $\{s_1, \ldots, s_n\}$ el conjunto de los polinomios simétricos elementales en $\{t_1, \ldots, t_n\}$.

- i) Caracterizar las subextensiones de grado 2 de $K(t_1, \ldots, t_n)/K(s_1, \ldots, s_n)$.
- ii) Sean $a_1, \ldots, a_n \in \mathbb{N}$. Probar que $t_1^{a_1} + t_2^{a_2} + \cdots + t_n^{a_n}$ genera $K(t_1, \ldots, t_n)/K(s_1, \ldots, s_n)$ si y sólo si $a_i \neq a_j \ \forall i \neq j$.

Ejercicio 9. Probar que:

- i) Todo grupo abeliano es resoluble.
- ii) Todo p-grupo es resoluble.
- iii) D_n es resoluble.
- iv) S_n es resoluble si y sólo si $n \leq 4$.

Ejercicio 10. Mostrar explícitamente que las siguientes extensiones son radicales:

i)
$$\mathbb{Q}\left(\sqrt[3]{1+\sqrt{2}}, i+\sqrt{3}\right)/\mathbb{Q}$$

- ii) E/\mathbb{Q} cuerpo de descomposición de $f = (X^4 2)(X^2 5)$.
- iii) $K(t_1, t_2)/K(s_1, s_2)$, donde K es un cuerpo de característica $0, \{t_1, t_2\}$ una familia algebraicamente independiente sobre K y $\{s_1, s_2\}$ los polinomios simétricos elementales.

Ejercicio 11. Sea K un cuerpo. Sea $f \in K[X]$ un polinomio de grado n y sea E un cuerpo de descomposición de f sobre K. Probar que si $G(E,K) \simeq S_n$, entonces f es irreducible en K[X].

Ejercicio 12.

- i) Sea $p \in \mathbb{N}$ primo. Sea $H \subset S_p$ un subgrupo que contiene una transposición y una permutación de orden p. Probar que $H = S_p$.
- ii) Sea $f \in \mathbb{Q}[X]$ irreducible de grado p primo, y sea $E \subset \mathbb{C}$ cuerpo de descomposición de f. Probar que si f tiene exactamente dos raíces no reales en \mathbb{C} , entonces $G(E/\mathbb{Q}) \simeq S_p$.

Ejercicio 13.

- i) Sea $m \in \mathbb{N}$ par, y sean $a_1 < a_2 < \cdots < a_r$ enteros positivos pares, con r > 1 impar. Sea $f = (X^2 + m)(X a_1) \dots (X a_r) 2$. Probar que:
 - (a) f es irreducible en $\mathbb{Q}[X]$.
 - (b) Para m suficientemente grande, f tiene exactamente dos raíces no reales en \mathbb{C} .
- ii) Deducir que para cada primo $p \in \mathbb{N}$, existe una extensión galoisiana E/\mathbb{Q} con grupo de Galois S_p .

Ejercicio 14. (Difícil)

- i) Probar que el resultado del ejercicio anterior, ítem i) (b), sigue siendo válido si se suprime la hipótesis "m suficientemente grande".
- ii) Deducir que $f=X^5-12X^4+46X^3-72X^2+88X-98\in\mathbb{Q}[X]$ no es resoluble por radicales.