Álgebra 1

Facultad de Ciencias Exactas y Naturales – Universidad de Buenos Aires Segundo Cuatrimestre 2011

Práctica 4 - Enteros (primera parte)

- 1. Decidir cuáles de las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$
 - i) $ab \mid c \Rightarrow a \mid c \lor b \mid c$

vi) $a \mid c \ y \ b \mid c \Rightarrow ab \mid c$

ii) $4 \mid a^2 \Rightarrow 2 \mid a$

- vii) $a \mid b \Rightarrow a < b$
- iii) $2 \mid ab \Rightarrow 2 \mid a \land 2 \mid b$
- viii) $a \mid b \Rightarrow |a| < |b|$
- iv) $9 \mid ab \Rightarrow 9 \mid a \land 9 \mid b$ v) $a \mid b + c \Rightarrow a \mid b \text{ ó } a \mid c$
- ix) $a \mid b + a^2 \Rightarrow a \mid b$
- **2**. Hallar todos los $n \in \mathbb{N}$ tales que
 - i) $3n-1 \mid n+7$

iii) $2n+1 \mid n^2+5$

ii) $3n-2 \mid 5n-8$

- iv) $n-2 \mid n^3-8$
- 3. Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$
 - i) $99 \mid 10^{2n} + 197$

iii) $56 \mid 13^{2n} + 28n^2 - 84n - 1$

ii) $9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$

- iv) $256 \mid 7^{2n} + 208n 1$
- i) Probar que $a b \mid a^n b^n$ para todo $n \in \mathbb{N}$.
 - ii) Probar que si n es un número natural par entonces $a+b\mid a^n-b^n$.
 - iii) Probar que si n es un número natural impar entonces $a+b\mid a^n+b^n$.
- 5. Hallar todos los primos positivos menores o iguales que 100
- **6**. Sea $n \in \mathbb{N}$. Probar que
 - i) si n es compuesto, entonces $2^n 1$ es compuesto
 - ii) si $2^n + 1$ es primo, entonces n es una potencia de 2
- 7. Calcular el cociente y el resto de la división de a por b en los casos
 - i) a = 133, b = -14

iv) $a = b^2 - 6$, $b \neq 0$

ii) a = 13, b = 111

v) $a = n^2 + 5$, $b = n + 2 (n \in \mathbb{N})$

iii) $a = 3b + 7, b \neq 0$

- vi) a = n + 3, $b = n^2 + 1 (n \in \mathbb{N})$
- 8. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de
 - i) la división de $a^2 3a + 11$ por 18 iv) la división de $a^2 + 7$ por 36

ii) la división de a por 3

- v) la división de $7a^2 + 12$ por 28
- iii) la división de 4a + 1 por 9
- vi) la división de 1 3a por 27
- **9.** Hallar todos los $n \in \mathbb{N}$ para los cuales $n^3 + 4n + 5 \equiv n 1$ $(n^2 + 1)$
- i) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 2, por 7 y por 14 **10**.
 - ii) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5

- iii) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^n (-1)^i \cdot i!$ por 36
- 11. i) Hallar todos los $a \in \mathbb{Z}$ tales que $a^2 \equiv 3$ (11)
 - ii) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (13)
 - iii) Probar que $a^2 \equiv -1$ (5) $\Leftrightarrow a \equiv 2$ (5) $oldsymbol{o}$ $a \equiv 3$ (5)
 - iv) Probar que $a^7 \equiv a$ (7) para todo $a \in \mathbb{Z}$
 - v) Probar que $7 \mid a^2 + b^2 \Leftrightarrow 7 \mid a \neq 7 \mid b$
 - vi) Probar que $5 \mid a^2 + b^2 + 1 \Rightarrow 5 \mid a \neq 5 \mid b$
 - vii) Sean $a, b, c \in \mathbb{Z}$ tales que $a^2 + b^2 = c^2$. Probar que $3 \mid a$ ó $3 \mid b$
- 12. Enunciar y demostrar criterios de divisibilidad por 8, 9 y 11
- 13. Sea a un entero impar que no es divisible por 5
 - i) Probar que $a^4 \equiv 1 \ (10)$
 - ii) Probar que a y a^{45321} tienen el mismo resto en la división por 10
- **14.** i) Probar que $2^{5n} \equiv 1$ (31) para todo $n \in \mathbb{N}$
 - ii) Hallar el resto de la división de 2⁵¹⁸³³ por 31
 - iii) Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39$ (31), hallar el resto de la división de k por 5
 - iv) Hallar el resto de la división de $43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}$ por 31
- 15. i) Sea a un entero impar. Probar que $2^{n+2} \mid a^{2^n} 1$ para todo $n \in \mathbb{N}$
 - ii) Hallar el resto de la división de 5^{2267} por 32
- **16**. i) Hallar el desarrollo en base 2 de 1365, 2800, $3 \cdot 2^{13}$ y $13 \cdot 2^n + 5 \cdot 2^{n-1}$ $(n \in \mathbb{N})$.
 - ii) Hallar el desarrollo en base 16 de 2800
- 17. Sea a un entero. Probar que si el desarrollo en base 10 de a termina en n ceros entonces el desarrollo en base 5 de a termina en por lo menos n ceros.
- 18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b
 - i) a = 2532, b = 63

iii) a = 131, b = 23

ii) a = 5335, b = 110

- iv) $a = n^2 + 1, b = n + 2 (n \in \mathbb{N})$
- **19**. Sean $a, b \in \mathbb{Z}$. Sabiendo que el resto de dividir a a por b es 27 y que el resto de dividir b por 27 es 21, calcular (a:b)
- **20**. Sea $a \in \mathbb{Z}$, a > 1 y sean $n, m \in \mathbb{N}$.
 - i) Probar que si r es el resto de la división de n por m, entonces el resto de la división de a^n-1 por a^m-1 es a^r-1
 - ii) Probar que $(a^n 1 : a^m 1) = a^{(n:m)} 1$
- **21**. Sea $a \in \mathbb{Z}$.
 - i) Probar que (5a + 8 : 7a + 3) = 1 o 41, y dar un ejemplo para cada caso
 - ii) Probar que $(2a^2 + 3a 1: 5a + 6) = 1$ o 43, y dar un ejemplo para cada caso

- i) Determinar todos los $a,b\in\mathbb{Z}$ coprimos tales que $\frac{b+4}{a}+\frac{5}{b}\in\mathbb{Z}$ 22.
 - ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$
 - iii) Determinar todos los $a \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$
- i) Sean $a, b, c \in \mathbb{Z}$, c > 0. Probar que (ca : cb) = c(a : b)**23**.
 - ii) Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Probar que
 - (a) si (a : b) = 1 entonces $(a^n : b^n) = 1$
 - (b) si (a:b) = d entonces $(a^n:b^n) = d^n$
- **24**. Sean $a, b \in \mathbb{Z}$. Probar que
 - i) si (a:b) = 1 entonces (7a 3b: 2a b) = 1
 - ii) si (a:b) = 1 entonces (2a 3b:5a + 2b) = 1 ó 19, y dar un ejemplo para cada caso
 - iii) si (a:b) = 2 entonces (5a 3b: 4a + b) = 2 ó 34, y dar un ejemplo para cada caso
- **25**. Sea $n \in \mathbb{N}$. Probar que
 - i) $(2^n + 7^n : 2^n 7^n) = 1$
 - ii) $(2^n + 5^{n+1} : 2^{n+1} + 5^n) = 3 ó 9$, y dar un ejemplo para cada caso
 - iii) $(3^n + 5^{n+1} : 3^{n+1} + 5^n) = 2 \text{ ó } 14$, y dar un ejemplo para cada caso
- **26**. Determinar, cuando existan, todos los $a, b \in \mathbb{Z}$ que satisfacen
 - i) 5a + 8b = 3
- ii) 24a + 14b = 7
- iii) 39a 24b = 6
- 27. Si se sabe que cada unidad de un cierto producto A cuesta 39 pesos y que cada unidad de un cierto producto B cuesta 48 pesos, ¿cuántas unidades de cada producto se pueden comprar con 135 pesos?
- 28. Hallar, cuando existan, todas las soluciones de las siguientes ecuaciones de congruencia
 - i) $17X \equiv 3$ (11)
- ii) $56X \equiv 28 (35)$ iii) $56X \equiv 2 (884)$ iv) $33X \equiv 27 (45)$
- 29. Hallar el resto de la división de un entero a por 18, sabiendo que el resto de la división de 7a por 18 es 5
- **30**. Retomando el ejercicio 21, determinar para qué valores de $a \in \mathbb{Z}$ se tiene
 - i) (5a + 8:7a + 3) = 1 y (5a + 8:7a + 3) = 41
 - ii) $(2a^2 + 3a 1:5a + 6) = 1$ y $(2a^2 + 3a 1:5a + 6) = 43$
- **31.** Hallar todos los $a \in \mathbb{Z}$ tales que $(7a+1:5a+4) \neq 1$