Ejercicio 1. Sean $E \subseteq \mathbb{R}^n$ medible y $1 \le p_1 \le p_2 \le +\infty$.

- (a) Probar que si $|E| < \infty$, entonces $L^{p_2}(E) \subseteq L^{p_1}(E)$.
- (b) Mostrar con un ejemplo que la inclusión puede no valer si $|E| = +\infty$.
- (c) Mostrar que si vale la inclusión de (a), entonces $|E| < +\infty$.

Ejercicio 2. Sean $E \subseteq \mathbb{R}^n$ medible de medida finita y $f: E \to \mathbb{C}$ medible.

(a) Probar que:

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

(b) Mostrar que eso puede ser falso si la medida de E es infinita.

Ejercicio 3. Sean $E \subseteq \mathbb{R}^n$ y $f: \mathbb{R}^n \to \mathbb{R}$ medibles, $1 \le p \le \infty$ y 1/p + 1/p' = 1. Probar que

$$||f||_p = \sup \int_E f(x)g(x)dx,$$

donde el supremo se toma sobre todas las funciones $g:E\to\mathbb{R}$ medibles tales que $\int_E f(x)g(x)dx$ existe y $\|g\|_{p'}\leq 1$.

Ejercicio 4. Probar que el conjunto de las funciones continuas de soporte compacto es denso en $L^1(\mathbb{R}^n)$.

Ejercicio 5. Sea $E \subseteq \mathbb{R}^n$ medible y $1 \le p \le \infty$.

- (a) Probar que el espacio $L^p(E)$ es completo.
- (b) Decidir para qué valores de p el espacio $L^p(E)$ es separable.

Ejercicio 6. Dada $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, y $h \in \mathbb{R}^n$, definimos la función f_h por $f_h(x) := f(x-h), (x \in \mathbb{R}^n)$. Probar que $f_h \to f$ en $L^p(\mathbb{R}^n)$ cuando $h \to 0$. ¿Es esto cierto para $p = \infty$?

Ejercicio 7.

(a) Mostrar que la función $h: \mathbb{R}^n \to \mathbb{R}$ definida a continuación es C^{∞} .

$$h(x) := \left\{ \begin{array}{ll} e^{\frac{1}{|x|_2^2 - 1}} &, \ \mathrm{si} \ |x|_2 < 1, \\ 0 &, \ \mathrm{si} \ |x|_2 \geq 1. \end{array} \right.$$

- (b) Probar que si $f,g \in L^1(\mathbb{R}^n)$ y alguna de las dos funciones tiene soporte compacto, entonces $sop(f*g) \subseteq sop(f) + sop(g)$. ¿Qué ocurre si ninguna de las funciones tiene soporte compacto? Concluir que si f y g tienen ambas soporte compacto, entonces f*g también.
- (c) Probar que si $A, B \subseteq \mathbb{R}^n$ son abiertos tales que $\overline{A} \subseteq B$ y A es acotado, entonces existe una función $f: \mathbb{R}^n \to \mathbb{R}$, de clase C^{∞} y de soporte compacto tal que $f \equiv 1$ en A y $f \equiv 0$ en $\mathbb{R}^n \setminus B$.

Ejercicio 8. Sean $E \subseteq \mathbb{R}^n$ medible y $1 \le r \le p \le s < \infty$. Probar que si $f \in L^r(E) \cap L^s(E)$ entonces $||f||_p^p \le ||f||_r^r + ||f||_s^s$.

Ejercicio 9. Probar que:

- (a) Si $f_n \to f$ en $L^p(E)$ para algún p $(1 \le p \le \infty)$, entonces $f_n \stackrel{m}{\to} f$ sobre E.
- (b) Si $f_n \to f$ en $L^p(E)$, $g_n \to g$ en $L^q(E)$ y $\frac{1}{p} + \frac{1}{q} = 1$, entonces $f_n g_n \to f g$ en $L^1(E)$.
- (c) Si $|E| < \infty$ y $f_n \to f$ en $L^\infty(E)$, entonces $f_n \to f$ en $L^p(E)$, para todo $p \ge 1$.

Ejercicio 10. Dadas las funciones $f_n:[0,1]\to\mathbb{R}$,

$$f_n = \begin{cases} e^n, & 0 \le x \le 1/n \\ 0, & \text{en otro caso,} \end{cases}$$

probar que $f_n \to 0$ a.e. y $f_n \xrightarrow{m} 0$, pero f_n no converge en $L^p([0,1])$ para ningún p con $1 \le p \le \infty$.

Ejercicio 11. Sean $E \subseteq \mathbb{R}^n$ medible y p tal que $1 \le p < +\infty$. Sean $(f_n)_{n \ge 1}$ y f en $L^p(E)$. Probar que

- (a) $||f_n f||_{L^p(E)} \to 0 \implies ||f_n||_{L^p(E)} \to ||f||_{L^p(E)}$.
- (b) Si $f_n \to f$ a.e. sobre E, entonces

$$||f_n||_{L^p(E)} \to ||f||_{L^p(E)} \quad \Rightarrow \quad ||f_n - f||_{L^p(E)} \to 0.$$

Sugerencia: Aplicar el Lema de Fatou a la sucesión

$$g_n(x) = 2^{p-1}(|f_n(x)|^p + |f(x)|^p) - |f_n(x) - f(x)|^p.$$

Ejercicio 12. Sea $k: \mathbb{R}^{2n} \to \mathbb{R}$ medible tal que existe c > 0 que verifica:

$$\sup_{x\in\mathbb{R}^n}\int |k(x,y)|dy\leq c \quad \text{ y } \quad \sup_{y\in\mathbb{R}^n}\int |k(x,y)|dx\leq c.$$

Probar que si $1 , entonces <math>K: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ dada por

$$K(f)(x) = \int k(x,y) f(y) dy$$

está bien definida y es uniformemente continua.

Ejercicio 13. Para $1 \le p < +\infty$ y $0 < |E| < +\infty$, definimos:

$$N_p[f] = \left(\frac{1}{|E|} \int_E |f|^p\right)^{1/p}.$$

Probar que

- (a) $p_1 < p_2 \Rightarrow N_{p_1}[f] \le N_{p_2}[f]$.
- (b) $N_p[f+g] \le N_p[f] + N_p[g]$.
- (c) $\frac{1}{|E|} \int_{E} |fg| \le N_p[f] N_{p'}[g], \ 1/p + 1/p' = 1.$
- (d) $\lim_{p \to +\infty} N_p[f] = ||f||_{\infty}.$

Ejercicio 14. Sean $E \subseteq \mathbb{R}^n$ medible con $0 < |E| < +\infty$ y $f \in L^{\infty}(E)$ que verifica $||f||_{\infty} > 0$. Para cada $k \in \mathbb{N}$, consideramos $a_k = \int_E |f(x)|^k dx$. Demostrar que $\lim_{k \to +\infty} a_{k+1}/a_k = ||f||_{\infty}$.

Ejercicio 15. Supongamos que $f_n \to f$ a.e. y que $f_n, f \in L^p$, $1 . Si <math>||f_n||_p \le M < \infty$, demostrar que $\int f_n g \to \int f g$, para toda $g \in L^{p'}$, 1/p + 1/p' = 1. ¿Es cierto este resultado para p = 1?

Ejercicio 16. Si $f_n \to f$ en L^p , $1 \le p < +\infty$, $g_n \to g$ puntualmente y $||g_n||_{\infty} \le M$, para todo $n \in \mathbb{N}$, probar que $f_n g_n \to f g$ en L^p .

Ejercicio 17. Demuestre la siguiente generalización de la desigualdad de Hölder.

Si
$$\sum_{i=1}^{k} \frac{1}{p_i} = \frac{1}{r}$$
 con $p_i, r \ge 1$, entonces

$$||f_1 \cdots f_k||_r \le ||f_1||_{p_1} \cdots ||f_k||_{p_k}$$

Ejercicio 18. Muestre que cuando $0 , los entornos <math>\{f \in L^p(0,1) : ||f||_p < \varepsilon\}$ de 0, no son convexos.

Ejercicio 19. Sea f tal que para todo $\alpha > 0$,

$$\omega(\alpha) = |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}| \le c(1+\alpha)^{-p}.$$

Probar que $f \in L^r(\mathbb{R}^n)$ para 0 < r < p.

Ejercicio 20. Sea p con $0 . Probar que <math>f \in L^p$ si y sólo si

$$\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) < +\infty.$$

Probar, además, que existen constantes positivas c_1 y c_2 que no dependen de f tales que

$$c_1 \left(\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) \right)^{1/p} \le \|f\|_p \le c_2 \left(\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) \right)^{1/p}$$

Ejercicio 21. Sea E = [0, 1/2]. Probar que

(a)
$$f(x) = x^{-1/p} (\ln x^{-1})^{-2/p} \in L^p(E)$$
, $(1 \le p < +\infty)$, pero $f \notin L^r(E)$ si $r > p$.

(b)
$$g(x) = \ln x^{-1} \in L^p(E)$$
 para todo $p \text{ con } 1 \le p < +\infty$, pero $g \notin L^\infty(E)$.

Ejercicio 22. Sea $E = [0, +\infty)$. Probar que $f(x) = x^{-1/2}(1 + |\ln x|)^{-1} \in L^2(E)$ pero $f \notin L^p(E)$ para ningún p tal que $1 \le p < +\infty$ y $p \ne 2$.

Ejercicio 23. Dada $f \in L^p(\mathbb{R}^n), 1 \leq p < +\infty$, probar que:

(a)
$$\left(\int_{\mathbb{R}^n} |f(x-h) + f(x)|^p dx \right)^{1/p} \underset{\|h\| \to +\infty}{\longrightarrow} 2^{1/p} \|f\|_p$$

(b)
$$\left(\int_{\mathbb{R}^n} |f(x-h) + f(x)|^p dx \right)^{1/p} \underset{\|h\| \to 0}{\longrightarrow} 2\|f\|_p$$

Ejercicio 24.

- (a) Dadas funciones $f \in L^p(\mathbb{R}^n)$ y $g \in L^{p'}(\mathbb{R}^n)$ donde 1/p + 1/p' = 1, probar que la convolución f * g(x) existe y es finita para todo $x \in \mathbb{R}^n$. Probar, además, que define una función acotada y uniformemente continua.
- (b) Dado $E \subseteq \mathbb{R}^n$ tal que $0 < |E| < +\infty$, probar que

$$E - E = \{x - y : x, y \in E\}$$

contiene un conjunto abierto no vacío.

Sugerencia: Considerar $\chi_E * \chi_{-E}$.

Ejercicio 25. Dada $f: \mathbb{R} \to \mathbb{R}$ integrable, para cada h > 0 sea

$$f_h(t) = \frac{1}{h} \int_{t-h/2}^{t+h/2} f(x) dx.$$

Si $f \in L^p$, probar que

- (a) $||f_h||_{\infty} \le h^{-1/p} ||f||_p$.
- (b) $f_h \in L^p \ y \|f_h\|_p \le \|f\|_p$.
- (c) Para cada $r \ge p \ge 1$, $||f_h||_r \le h^{1/r 1/p} ||f||_p$.

(d) Si $p < \infty$, $||f_h - f||_p \xrightarrow[h \to 0]{} 0$.

Ejercicio 26. Sean 1 , <math>1/p+1/p' = 1 y $f \in L^p(\mathbb{R}^n)$. Probar que si $(f_k)_{k \geq 1}$ es una sucesión de funciones de L^p tal que para toda $g \in L^{p'}$ vale que $\lim_{k \to +\infty} \int_{\mathbb{R}^n} f_k g dx = \int_{\mathbb{R}^n} f g dx$, entonces $||f||_p \leq \liminf_{k \to +\infty} ||f_k||_p$.

Ejercicio 27. Sean $E \subseteq \mathbb{R}^n$ medible y $p \ge 1$. Definimos:

$$L^p_*(E) = \{f: E \rightarrow \overline{\mathbb{R}} \text{ medible}: \sup_{t>0} t \left(|\{x \in E: |f(x)| > t\}| \right)^{1/p} < +\infty \}.$$

Probar que

- (a) $L^p(E) \subseteq L^p_*(E)$,
- (b) si $|E| < +\infty$ y p > 1, entonces $L^p_*(E) \subseteq L^1(E)$.

Ejercicio 28. Dados [a, b] un intervalo acotado y $f \in L^p([a, b])$ 1 , definimos

$$F(x) = \int_{a}^{x} f(t) dt \qquad , \qquad x \in [a, b].$$

Probar que existe una constante K tal que para toda partición $a=x_0 < x_1 < \ldots < x_n = b$ resulta:

$$\sum_{i=0}^{n-1} \frac{|F(x_{i+1}) - F(x_i)|^p}{(x_{i+1} - x_i)^{p-1}} \le K.$$