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WHEN IS A FUNCTION THAT SATISFIES THE 
CAUCHY-RIEMANN EQUATIONS ANALYTIC? 

J. D. GRAY AND S. A. MORRIS 

1. The Looman-Menchoff theorem-An extension of Goursat's theorem. It is well known' that a 
complex-valued function f = u + iv, defined and analytic on a domain D in the complex plane satisfies 
the Cauchy-Riemann equations 

du dv du dv 
dx dy and d 

throughout D. The standard textbooks, such as those authored by Ahlfors, Cartan, Churchill, 
Jameson, Knopp, Sansone and Gerretson, avoid answering the question as to whether or not the 
converse holds. Most instead offer the following partial converse due to Goursat [131. 

THEOREM 1. If f = u + iv, defined on a domain D, is such that 
(i) du / dx, du / dy, dv / dx, dv / dy exist everywhere in D, 
(ii) u, v satisfy the Cauchy-Riemann equations everywhere in D, and if further 
(iii) f is continuous in D, 
(iv) du /Idx. du /Idy, dv / dx, dv / dy are continuous in D, 

then f is analytic in D. 

This is a substantially revised version of an article by the present authors and S. A. R. Disney that appeared in 
the Gazette of the Australian Mathematical Society 2 (3) (1975), 67-81. S. A. R. Disney's name does not appear 
above only because he preferred it that way. 

' This is a rare instance of a well-known result that is indeed well known. 
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The remaining standard texts offer the stronger result: 

THEOREM 2. If f = u + iv, defined on a domain D, is such that 
(i) du / dx, du / dy, dv / dx, dv / dy exist everywhere in D, 
(ii) u, v satisfy the Cauchy-Riemann equations everywhere in D, and if further 
(iii) u, v, as functions of two real variables, are differentiable everywhere in D, 

then f is analytic in D. 

Recently the authors began a search to discover precisely what is known regarding the converse. 
The only modern book we were able to find tnat addresses itself to this problem is Derrick [8]. He 
points out that far weaker conditions than those of Theorem 2 are known to imply analyticity but that 
the Cauchy-Riemann equations themselves do not imply analyticity! Indeed, the function f given by 

f(z)= exp(-z4) if z?O 0 ~~if z =0, 

first noticed by Looman [20, 107], (see also [39, 70]), is readily seen to satisfy the Cauchy-Riemann 
equations everywhere, but, as f(z)/z -- oo as z -O 0 with arg z = X /4, fails to be analytic at the origin. 
Observe that f must have an essential singularity at 0 otherwise df /Idx could not exist there. 

Derrick [8] suggests that the 'best' result in this direction appears to be 

THEOREM 3. (Looman-Menchoff) If f = u + iv, defined on a domain D, is such that 
(i) du / dx, du / dy, dv / dx, dv / dy exist everywhere in D, 
(ii) u, v satisfy the Cauchy-Riemann equations everywhere in D, and if further 
(iii) f is continuous in D, 

then f is analytic in D. 

Menchoff's proof (see [34, 199] and [24, 9]), based on the concepts of Lebesgue integration and 
Baire category is, according to Saks [36] "... undoubtedly one of the most elegant and unexpected 
applications of the modern theory of real functions to the elementary problems of an entirely classical 
aspect." A proof of the theorem is given in the appendix. 

A word of caution. The naive local version of the Looman-Menchoff theorem is: if a function is 
continuous at zo and satisfies the Cauchy-Riemann equations there, it is complex-differentiable at zo. 
This assertion is false! For example [8, 15], the function 

f(z = I/Z14if Zl0 f(z)={()IZI if z =0, 

is continuous everywhere, satisfies the Cauchy-Riemann equations at 0, but is not complex- 
differentiable at the origin. To the best of our knowledge the strongest result in this direction is the 
standard one: if f = u + iv is such that (i) u, v are differentiable at zo, (ii) u, v satisfy the 
Cauchy-Riemann equations at zo, then f is (complex) differentiable at zo. See [17, 35]. 

Although Looman and Menchoff clearly did improve on Goursat's theorem others have obtained 
still more subtle results. 

2. Extensions of the theorems of Green, Morera and Goursat. The earliest contribution to the 
problem appears to be that of Paul Montel who, in a 1913 note in the Comptes Rendus. asserted the 

THEOREM 4. If f = u + iv, defined on a domain D, is such that 
(i) du / dx, du / dy, dv / dx, dv / dy exist everywhere in D, 
(ii) u, v satisfy the Cauchy-Riemann equations everywhere in D. and if further 
(iii) f is bounded in D, 

then f is analytic in D. 

Recall that a function f on D is said to be locally bounded if it is bounded in some neighbourhood 
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of each point of D. Now analyticity in D means analyticity in some neighbourhood of each point of D, 
whence condition (iii) can be replaced by 

(iii)' f is locally bounded in D. 
As every continuous function is locally bounded it follows that Theorem 4 with (iii) replaced by (iii), 
implies Theorem 3. Although this result appears to be quite strong, observe that condition (i) implies 
the separate continuity of f which in turn implies its measurability, [26]. (In fact f is necessarily of 
Baire class I). 

Montel neither proved this result in his note [27] nor did he publish a proof elsewhere. In spite of 
this, it was stated as a theorem in Menchoff's monograph [241-one in a series edited by Montel. 
Montel did, however, indicate how the proof is an "immediate application" of a strengthened version 
of the following classical result on exact differentials. (Here, as elsewhere, the term integrable means 
Lebesgue integrable and all integrals are Lebesgue integrals. However, as every bounded Riemann 
integrable function is Lebesgue integrable, with the exception of Theorems 8, 9 and 10 and Question I 
at the end of ?3, Lebesgue may be replaced by Riemann throughout.) 

THEOREM 5. Let C be a simple closed contour and K the closure of its interior. If P, Q are real- valued 
functions of two variables on K such that 

(i) aP / dy, dQ / dx exist everywhere in K, 
(ii) dP/ dy = dO / dx everywhere in K, 

and if further 
(iii) P, Q are continuous in K, 
(iv) dPl/ dy, dQ /dx are continuous in K, 

then 

Pdx + Qdy = O. 

Of course this is a special case of the following version of Green's theorem-a proof of which may 
be constructed by making technical adjustments to that on page 289 of [11. Parenthetically we remark 
that although condition (iv) below implies (ii), (ii) is included as it is clearly necessary. 

THEOREm 6. Let C be a simple closed contour and K the closure of its interior. If P, Q are real-valued 
functions of two variables on K such that 

(i) dP / dy, dQ / dx exist everywhere in K, 
(ii) dQ / dx - dP / dy is integrable in K, 

and if further 
(iii) P, 0 are continuous in K, 
(iv) dP/ dy, dQ / dx are continuous in K, 

then (Green's formula) 

Pdx + Qdy ff -dx y)dxdy. 

In 1923 Looman (20], by weakening the hypotheses in Theorem 5, offered a proof of Theorem 3. 
Unfortunately the proof was found to contain a serious gap centring around a surprising fact. Even 
though dP /dx, dO /dy do not occur in Green's formula, an example of Fesq [11] reveals that some 
assumptions regarding them must be made if one wishes to relax condition (iii) and still have a valid 
statement. Indeed, even if the right-hand side of the formula is zero, the statement is false without 
such assumptions. It was Tolstoff [411 who first realized this. Unfortunately this error appears in the 
papers of both Montel and Looman (see also [461), and was not corrected until Menchoff's paper [23, 
91 appeared. (See also [34, 1991.) 

Tolstoff [40] was the first to prove Montel's theorem. Implicit in his work is the observation that 
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whenever one has a Green-type theorem (see Theorem 6) and a Morera-type theorem (see Theorem 
7) one obtains a Goursat-type theorem (Theorem 1). For example, let us see how the classical Goursat 
theorem follows from the classical Green theorem (more accurately, from its corollary-Theorem 
5-on exact differentials) and the classical Morera theorem. 

THEOREM 7. (Morera, cf. [35, 120]) If f, defined on a domain D, is such that 
(i) f is continuous in D, 

(ii) fIR f(z )dz = 0 for each rectangle R (*) in D, 

then f is analytic in D. 

Proof (Of Goursat's theorem). For any rectangle R 

fRf(z)dz = (u + iv)dz = udx - vdy + i vdx + udy = O 
AR AR AR AR 

by Theorem 5 and the Cauchy-Riemann equations. Hence by Morera's theorem, f is analytic in D. 
The moral of this proof is clear. If one can reduce the conditions involved in Morera's theorem and 

those involved in Green's theorem one can obtain a strengthened version of Goursat's theorem. For 
instance, one can readily deduce the Looman-Menchoff theorem (Theorem 3) from the classical 
Morera theorem and the following extension of Green's theorem due to Paul J. Cohen [7]-the same 
Cohen of Continuum Hypothesis fame. 

THEOREM 8. Let R be a closed rectangle. If P, Q are real-valuedfunctions of two variables on R such 
that 

(i) dP / dx, dP / dy, dQ / dx, dQ / dy exist everywhere in R, 
(ii) dQ / dx - dP/ dy is integrable in R, 

and if further 
(iii) P, Q are continuous in R, 

then 

Pdx + Qdy I f ( dxdy. 
JR J Rdx dy 

Such a proof would, however, reverse the chronological order of things. In fact Cohen's ideas were 
inspired by the proof of the Looman-Menchoff theorem. 

It was via the implication Morera + Green > Goursat that Tolstoff [40] proved Montel's 
theorem. First, he proved a strong version of Morera (with continuous replaced by integrable, locally 
bounded and separately continuous); next, he proved a strong version of Theorem 5, and finally he 
combined these as in the above proof of Goursat's theorem, to yield Montel's theorem. 

3. More technical results. We saw in ?1 that a function that satisfies the Cauchy-Riemann 
equations everywhere need not be analytic. With this in mind one cannot fail to be impressed by the 
distributional result. 

THEOREM 9. Suppose f is locally integrable on D and, as a distribution, satisfies the 
Cauchy-Riemann equations. Then f agrees almost everywhere with a function analytic in D. 

Proof. The proof proceeds by a smoothing argument. We present only an outline as full details 
may be readily found in [49, 1171. Let k be a 'bump' function, viz, k is a Cx function defined on the 
complex plane, k ! 0; ff k(z)dxdy = 1; and k vanishes outside the open unit disc. For E >0 put 
k? (z) = e -2k (z / e ). Then the convolution f. = f * k. given by 

(*) Throughout, all rectangles are assumed to have their sides parallel to the co-ordinate axes. 
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fe (z) = f I(z -T)kk (')ddfd1 

is a Cx function of z for those z distant greater than E from the boundary of D. Moreover [47, 1181, 
f-> f a.e. in D asE -> O. 

If g is a (differentiable) function the Cauchy-Riemann equations may be written as agi ff = 0, 
where d /Idz is the formal partial differential operator 

1 + . d 
2td dyJ 

Hence, to assert of f that as a distribution it satisfies these equations means that for each test function 

J0 LO f)dfd- = O. 

Given this, the following equations are readily verified, 

= da II f(t)k. (z - 7)d,d = f( ) -- k (z - {)dfdr 

= - ffJ f( )W kE (Z -)d6d-q = 0 as k, is a test function. 

Thus f, is a C' function satisfying the Cauchy-Riemann equations and hence, by Goursat's theorem, 
is analytic. But, by Cauchy's integral formula, for almost all z E D, and for appropriate contours y, 

f(z) = lim f, (z) =limy dI-z 2di t -z 

so that f agrees a.e. with a function analytic in D. 
Theorem 9 is a particular instance of the general regularity theorem: any distributional solution of 

a hypo-elliptic system of partial differential equations (of which the Cauchy-Riemann system is a 
paradigm example) is in fact a C' function. Moreover, the above proof-technique of "smoothing" is 
one of the key tools needed to prove the general result. See [16, 101]. 

From Theorem 9 the following result of Rademacher [29] may be deduced. 

THEOREM 10. If f = u + iv, defined on a domain D, is such that 
(i) du / dx, Au / dy, dv / Ax, dv / ay exist a.e. in D, 
(ii) u, v satisfy the Cauchy-Riemann equations a.e. in D, 

and if further 
(iii) f is locally integrable in D, 
(iv) f is separately absolutely continuous in D, 
(v) du / dx, du /ly, dv / dx, dv /ly are locally integrable in D, 

then f is analytic in D. 

Proof. Note first the redundancy: (iv) implies (i). (iv) together with (v) suffice to ensure the validity 
of integration by parts: 

f ff(z)Lodxdy f - fAt (z)dxdy, 

for all text functions 0. This equation shows that the classical and distributional derivatives of f 
'coincide'. Thus by Theorem 9, f agrees almost everywhere with a function g analytic in D. In fact, 
f = g everywhere in D. To see this, suppose to the contrary that for some zo = x, + iy, ED, 
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f(zO),4 g (zo). Then, as f is separately continuous, f and g must disagree at all points on some 
line-segment through z. parallel to the x -axis. For each xo + iy on this segment they must similarly 
disagree at all points on some line-segment through xo + iy parallel to the y -axis. The union of all 
these line segments is not of measure zero. Q.e.D. 

Aside from its lack of elegance, due to (iii), (iv) and (v), Theorem 10 does not appear to be 
particularly strong. Nonetheless it is not contained in any of the others. On the credit side, however, 
the weakening of (i) and (ii) from 'everywhere' to 'almost everywhere' suggests the possibility of 
weakening Looman-Menchoff to, say, 

If f = u + iv, defined on a domain D is such that 
(i) du/ax, au/dy, dv /dx, dv/dy exist a.e. in D, 
(ii) u, v satisfy the Cauchy-Riemann equations a.e. in D, 

and if further 
(iii) f is continuous in D, 

then f is analytic in D. 
This conjecture is seriously false. For a counter-example, due to Urysohn, [48, 4641, first construct 

a planar Cantor-set as follows. From the closed unit square delete ([0, 1] x (3, 3)) U ((2, 3) x [0, 1]) thus 
leaving a set K, consisting of four closed squares. Continue deleting in the usual way so that at the n th 
stage we are left with a set Kn consisting of 4n closed squares whose centres we denote by 
z n, k(k = 1, 2,'. 4 ). Then K = nnKn is a (totally disconnected) set of planar measure zero. Next put 

4n 

f(z) = lim 4 
n 

(z -Zn, k; 

then f is everywhere continuous, analytic off K (and thus satisfies, (i), (ii), (iii) above), yet fails to have 
an analytic continuation throughout K! The difficulty lies in weakening the condition that the partial 
derivatives exist everywhere. That some such weakening is possible is illustrated by the version of 
Looman-Menchoff appearing in Saks [34, 199]-a proof of which appears in the Appendix to this 
paper. 

THEOREM 11. If f = u + iv, defined on a domain D, is such that 
(i) du /dx, du /dy, av /dx, av /ly exist everywhere in D, except on a countable set, 
(ii) u, v satisfy the Cauchy-Riemann equations a.e. in D, 

and if further 
(iii) f is continuous in D, 

then f is analytic in D. 

One may weaken still further the conditions on the partial derivatives of f; results along these lines 
have been obtained by Cafiero [6] and Fesq [111, the latter deriving the following. 

THEOREM 12. If f = u + iv, defined on a domain D, is such that 
(i) au / dx, du / ay, dv / Ax, av / dy exist everywhere in D, except on a countable union of sets of finite 

one-dimensional Hausdorff measure, 
(ii) u, v satisfy the Cauchy-Riemann equations a.e. in D, 

and if further 
(iii) f is locally bounded in D, 
(iv) f is separately continuous in D, 

then f is analytic in D. 

Recall ([14, 53] and [121), that the one-dimensional Hausdorff measure of a set E in the plane is 
defined to be 

sup inf {diam (En): E= U En,diam(En)<4. 
&>n I I 
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Any contour of finite length has finite one-dimensional Hausdorff measure, whereas a (non-trivial) 
rectangle has infinite one-dimensional Hausdorff measure. 

Condition (i) dates back to Besicovitch [3] who proved that if a function defined on a 
simply-connected domain D is continuous everywhere and (complex) differentiable everywhere, 
except on a countable union of sets of finite linear measure, then in fact if is (complex) differentiable 
everywhere in D. 

We conclude this section with two questions which, as far as we know, have not been answered. 

QUESTION 1. Suppose f = u + iv, defined on a domain D, is such that 
(i) du / dx, du / dy, dv / dx, dv / dy exist everywhere in D, 
(ii) u, v satisfy the Cauchy-Riemann equations everywhere in D, 

and suppose further that 
(iii) f is locally integrable in D. 

Does it follow that f is analytic in D? 

QUESTION 2. Suppose f = u + iv, defined on a domain D, is such that u, v satisfy the 
Cauchy-Riemann equations everywhere in D. What is the structure of the set E of points of 
non-analyticity of f? 

Regarding Question 2, Trokhimchuk [43, 109] shows that E is (closed and) totally disconnected, so 
that f is necessarily analytic on a dense open subset of D. However, Pelling (private communication) 
has shown that E can have positive measure. 

4. Odds and ends. The only 'odd' worth mentioning is the characterization (due to Heffter [151) in 
terms of Cauchy-Riemann 'difference' equations, of those continuous functions that are analytic. His 
result is that a continuous function u + iv on a domain D is analytic in D iff for each rectangle 
R = [a, b] x [c, d] in D there are points (x, y), (x', y') E R for which 

u(b, y)- u(a, y) v(x, d)- v(x, c) 
b-a d-c 

u(x',d)-u(x',c) v(b,y')- v(a,y') 
d-c b-a 

For even odder odds see [43]. 
As for 'ends', there are a number of papers dealing with the weakening of the conditions in 

Green's and Morera's theorems; see [51, [11], [29], [321, [351 and [37]. Further, the extension from 
rectangles to more general regions is dealt with in [25], [28], [31] and [45]. For a readable account of a 
fascinating and surprising extension of Morera's theorem consult Zalcman [47] and [49]. Inter alia he 
shows how relatively weak versions of Green lead to surprisingly strong versions of Morera. Whilst on 
the topic of Morera mention must be made of a remarkable exafmple of Vitushkin [12, 95]. He 
constructs a compact, totally-disconnected planar set E of (1 + e)-dimensional Hausdorff measure 
zero for each E >0, and a (non-constant) function f continuous on the extended complex plane, 
analytic on the complement of E (and thus without an analytic continuation to E), such that for any 
closed contour y disjoint from E, f,f(z)dz = 0! 

Appendix. A Proof of the Looman-Menchoff Theorem. The proof rests heavily on two lemmas 
each of which is a variation on the 'fundamental theorem of calculus' theme. The first, due to 
Menchoff [24], allows one to estimate certain naturally arising contour integrals. The proof of this 
lemma is entirely elementary and may be found in [34, 198]. The second lemma is well known in 
measure theory and may be found in [33, 166] or [9, 214]. 

LEMMA 1. Let R be a closed rectangle and k: R -> R a function both of whose partial derivatives 
do / dx, do / dy exist everywhere in R. Let N be a constant and E C R a closed non -empty set such that 
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10(, y)- 4(x, y) I NJ - xi, 

i (X, q) - +(x, y)J NJ -q - y l 

whenever (x, y) E E, '(c, y) E R, (x, -q) E R. Suppose [a, b] x [a, 13] is the smallest rectangle in R 
containing E, then 

|I J[+(x,p) - +(x, a)]dx - I dxdy 'N.m (R - E) 

I [(b, y) - (a, y)]dy - I dxdy I5N.m (R - E), 

where m denotes (planar) Lebesgue measure. 

In order to state the second lemma we need the notion of the derivative of a set function. Suppose 
A is a (complex) Borel measure on an open set K in R2, that z E K and c is a complex number. If for 
every sequence of Borel sets (Bn) that 'shrink nicely' to z (cf. [33, 163]), 

A(Bn)/m(Bn) -c as n -oo, 

A is said to be differentiable (with respect to m ) at z. c is called the derivative of A at z and is denoted 
by (dA I dm )(z). 

LEMMA 2. Let A be a complex Borel measure on the open set K CR2. Then 
(i) dA /dm exists a.e. in K and belongs to L'(K). 

If further A is absolutely continuous with respect to m then 

(ii) A (B) dA (z)dm (z) for every Borel set B, and 

(iii) dA 1dm coincides a.e. with the Radon-Nikod#m derivative of A with respect to m. 

We are now ready to present the 

Proof. (Of Looman-Menchoff). By way of contradiction suppose that the (closed) set E CD of 
points at which f fails to be analytic is non-empty. For each natural number n put 

En={zED:If(z+h)-f(z)I/|hI?-'n and If(z+ih)-f(z)I/IhI_-'?n, 
for real h with 0<IhIlI/n}. 

As f is continuous, each En is closed and as both first-order partial derivatives of f exist throughout D, 
the (En) cover D. By the Baire category theorem [33, 103], applied to the complete metric space E, 
there are a natural number N and an open rectangle K whose closure lies in D, such that 
07ErnKCEN. 

For each (closed) rectangle R in K define the (complex-valued) set function A by the contour 
integral 

A(R)= f(z)dz. 
R 

If R, R' are rectangles in K put 

A(R UR')=f f(z)dz, 
@(R UR') 

and if R is a rectangle in K put 

A(K- R) = A(K)- A(R). 
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A so defined is an additive set function on the Boolean algebra R generated by the rectangles in K. By 
the Hahn extension theorem [9, 136, Corollary 9], A has a (unique) extension to a measure (also 
denoted by A) on the or-algebra generated by R. It is clear that this or-algebra is precisely the 
collection of all Borel sets of K and hence A is a (complex) Borel measure on K. 

Our aim now is to show that A is identically zero, as once this is established A (R) = 0 for each 
rectangle R in K, whence, by Morera's theorem f is analytic throughout K. As this conclusion 
contradicts the assumed non-emptiness of E (in K) the proof will then be complete. To show that A is 
the zero measure it suffices to show that (a) A is absolutely continuous with respect to m, and (b) the 
derivative dA /dm vanishes almost everywhere in K (cf. Lemma 2 (ii)). 

The basic tool neeeded to prove both (a) and (b) is the estimate (*) below. To establish it let R be 
any rectangle in K meeting E and with side lengths -? 1/N. If J denotes the smallest rectangle 
containing R n E it follows from the definition of EN, and Lemma 1 when used in conjunction with 
the Cauchy-Riemann equations, that I A (J)|I 20N.m (R - E). But by the Cauchy-Goursat theorem, 
A vanishes on any rectangle not meeting E, so that this inequality may be written as 

(*) IA(R)I 20N.m(R - E). 

Armed with (*) we can verify (a) above. Toward this end let F be a subset of K of (planar) 
Lebesgue measure zero. As such, given any E > 0 there is a sequence (Rn) of rectangles in K which 
cover F and which are such that Y,nm (Rn) < E /20N. By subdividing if necessary we may assume 
further that the side-lengths of all R, are ' 1/N and that all Rn meet E. Then it folldws that 
A (F) I-' En I A (R.) I 2ON.1nm (Rn - E) - 20N.1, m (Rn,) < E so that A (F) = 0 and (a) is established. 

As for (b), if z E K - E, by taking sufficiently small rectangles in the definition of the derivative of 
A and invoking Cauchy-Goursat again, we see that (dA / dm )(z) = 0. As for points in E note first that 
for any z E K, if R CK is a rectangle containing z, meeting E, and of side length ? 1/N, by (*), 

IA(RI?2O m(R -E. 2Nm (CEnlR) 
(**) Am(R) < 20N (R) 20Nm (R) 

CE being the complement of E in K. Denote by mcE the restriction of m to CE so that for any Borel 
set B, 

mcE(B) = m (CEfnB)=f XCE(z)dxdy, 

XCE being the characteristic function of CE. By Lemma 2 (iii) we have, for almost all z E K 

dmC 

that foralmot al zEE, (mCE dmC 

(Z 

)-=XCE 

(Z ) 

so that, for almost all z E E, (dmcE /dm )(z) = 0. Thus if (Rn) is any sequence of rectangles as above 
that 'shrink nicely' to z E E, for almost all such z 

dmCE =iMmCE(R.) f_m(CEnlR,) 
dm (z) n- m(Rn) n- oo m(Rn) 

so that by (**) A(Rn)/m(Rn)-O 0. Hence, dA/dm(z)=0 for a.a. z EE, as was required. 
As Lemma 1 holds if the partial derivatives are assumed to exist only on the complement of a 

countable set [34, 198], the above proof actually proves the slightly stronger Theorem 11. 
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PROGRESS REPORTS 

EDITED BY P. R. HALMOS 

Material for this Department should be sent to P. R. Halmos, Department of Mathematics, 
University of California, Santa Barbara, CA 93106 

It is easy to be too busy to pay attention to what anyone else is doing, but not good. All of us should know, and 

want to know, what has been discovered since our formal education ended, but new words, and relations between 

them, are growing too fast to keep up. It is possible for a person to learn of the title of a recent work and of the key 

words used in it and still not have the faintest idea of what the subject is. 
Progress Reports is to be an almost periodic column intended to increase everyone's mathematical information 

about what others have been up to. Each column will report one step forward in the mathematics of our time. The 

purpose is to inform, more than to instruct: what is the name of the subject, what are some of the words it uses, 

what is a typical question, what is the answer, who found it. The emphasis will be on concrete questions and 

answers (theorems), and not on general contexts and techniques (theories). References will be kept minimal: 

usually they will include only one of the earliest papers in which the answer appears and a more recent exposition 

of the discovery, whenever one is easily available. 
Everyone is invited to nominate subjects to be reported on and authors to prepare the reports. The ground 

rules are that the principal theorem should be old enough to have been published in the usual sense of that word 

(and not just circulated by word of mouth or in preprints); it should be of interest to more than just a few 

specialists; and it should be new enough to have an effect on the mathematical life of the present and near future. 

In practice most reports will probably be on progress achieved somewhere between 5 and 15 years ago. 

SCHAUDER BASES 

P. R. HALMOS 

Euclidean spaces have three basic properties: they are (1) vector spaces, with (2) a concept of 
length, and (3) a concept of angle. Banach spaces, whose intensive study began in the 1930's, 
constitute a generalization that retains requirements (1) and (2) but does not insist on (3). (Precisely: a 
Banach space is a real or complex vector space endowed with a norm, with respect to which, as a 
metric space, it is complete.) 

Generalizations can turn out to be too general (as wise hindsight sometimes shows); they can lead 
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