1	2	3	4	5

Calif.

APELLIDO Y NOMBRE:

LIBRETA:

Algebra I - 2do Cuatrimestre 2010 Final -21/12/2010

1. Sea $(f_n)_{n\in\mathbb{N}}$. la sucesión de polinomios definida por

$$\begin{cases} f_1 = X^2 + X + 1 \\ f_{n+1} = (X^2 - 2X + 3) f_n^2 + 2(f_n + 1) - 5 \quad \forall n \in \mathbb{N} \end{cases}$$

Se considera la sucesión $(a_n)_{n\in\mathbb{N}}$ cuyo término general es $a_n=\operatorname{gr}(f_n)$. Conjeturar una fórmula general para a_n y probarla.

- 2. a) Dado $n \in \mathbb{N}$, calcular $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.
 - b) Sea A un conjunto finito no vacío. Probar que la cantidad de subconjuntos de A de cardinal par es igual a la cantidad de subconjuntos de A de cardinal impar.
- 3. Sea $a \in \mathbb{Z}$ tal que $(a^{103} + 3 : 4) = 2$ y $a^{212} \equiv 2 \pmod{7}$. Hallar los posibles restos de dividir a a por 28.
- 4. Se define en G_{16} la siguiente relación:

$$w \Re z \iff w z^{-1} \in G_8.$$

- a) Probar que \Re es una relación de equivalencia.
- b) Sea $z_0 \in G_8$. Probar que $w \Re z_0 \iff w \in G_8$.
- 5. Probar que si tres números en \mathbb{C} no nulos suman 1 y sus inversos también suman 1, entonces al menos uno de los tres es 1. (Sug: determinar cómo puede ser un polinomio mónico que tenga a los tres números por raíces).

Justifique todas sus respuestas

Complete esta hoja con sus datos y entréquela con el resto del examen