- Definición: un conjunto X es numerable si hay una biyección $\mathbb{N} \to X$. Un conjunto es contable si es finito o numerable.
- Observación: todo subconjunto de N es contable.
- Corolario: todo subconjunto de un conjunto contable es contable.
- Observación: Un conjunto X es contable si hay una función inyectiva $X \to \mathbb{N}$.
- Observación: Un conjunto no vacío X es contable si y solo si hay una función sobreyectiva $\mathbb{N} \to X$.
- \bullet Proposición: $\bigcup_{i\in\mathbb{N}}\mathbb{N}^i$ es numerable
- \blacksquare Demostración: La función $f\colon \bigcup_{i\in\mathbb{N}}\mathbb{N}^i\to\mathbb{N},$ definida por

$$f(x_1,\ldots,x_i)=p_1^{x_1}\cdots p_i^{x_i},$$

donde $p_1 < p_2 < p_3 < \cdots$ es la sucesión de los números primos, es inyectiva.

- Corolario: Una unión contable $\bigcup_{i \in I} X_i$, de conjuntos contables, es contable. Además, $\bigcup_{i \in I} X_i$ es numerable si y solo si algún X_i es infinito o $\{i \in I : X_i \neq \emptyset\}$ es infinito.
- Corolario: si $X_1, \ldots x_n$ son contables, entonces $X_1 \times \cdots \times X_n$ es contable.
- Ejemplos: 1) \mathbb{Z} es numerable, 2) \mathbb{Q} es numerable, 3) $\mathbb{Z}[X]$ es numerable.
- Definición: un número real es algebraico si es raíz de un polinomio con coeficientes en Z. Un número es trascendente si no es algebraico.
- Ejemplo: el conjunto de los números algebraicos es numerable.
- \blacksquare Teorema: \mathbb{R} no es numerable.
- Corolario: hay una cantidad no numerable de números trascendentes.
- Definición: el *cardinal* de un conjunto A es un objeto |A| con la propiedad de que |A| = |B| si y solo si hay una función biyectiva $f: A \to B$.
- Ejemplo: el primer cardinal no finito es $|\mathbb{N}|$. Este cardinal es denotado \aleph_0 . Un conjunto A satisface $|A| = \aleph_0$ si y solo si A es numerable. El cardinal de \mathbb{R} es denotado con c y llamado cardinal del continuo.
- Teorema: sea A un conjunto y sea P(A) el conjunto de partes de A. No hay ninguna función sobreyectiva de A en P(A).
- Teorema: para cada conjunto A hay una función biyectiva $P(A) \to \{0,1\}^A$ (B^A denota el conjunto de funciones de A en B).
- Al definir exponenciación de cardinales veremos que esto justifica escribir $|P(A)| = 2^{|A|}$.
- Definición: sean a y b números cardinales y sean A y B conjuntos tales |A| = a y |B| = b. Decimos que a es menor o igual que b, y escribimos $a \le b$ si hay una función inyectiva $f: A \to B$. Decimos que a es menor que b, y escribimos a < b, si $a \le b$ y $a \ne b$.
- ullet La relación \leq es reflexiva y transitiva.
- Teorema: si existen funciones inyectivas $f: A \to B$ y $g: B \to A$, entonces existe una función biyectiva $h: A \to B$.
- Corolario: la relación ≤ es antisimétrica.
- Observación: hay infinitos cardinales infinitos.
- Lema de Zorn: si L es un conjunto parcialmente ordenado en el que cada cadena tiene una cota superior, entonces L tiene elementos maximales.
- Un orden total \leq sobre X es un buen orden si todo subconjunto $Y \subseteq X$ tiene elemento mínimo.
- Principio de buena ordenación: todo conjunto puede ser bien ordenado.
- Axioma de elección: dado un conjunto no vacío I y una familia de conjuntos $(X_i)_{i \in I}$ hay una función $f: I \to \bigcup_{i \in I} X_i$ tal que $f(i) \in X_i$ para todo $i \in I$

- Teorema: Dados conjuntos $X \in Y$, $|X| \le |Y|$ o $|Y| \le |X|$.
- Corolario: \leq es un orden total.
- Definición de suma de cardinales
- Observación: 1) (a+b)+c=a+(b+c), 2) a+b=b+a, 3) a+0=0+a=a.
- Proposición: todo conjunto infinito se expresa cono unión disjunta de conjuntos numerables.
- Para cada cardinal infinito a vale que a + a = a.
- Corolario: Sean a y b cardinales, con b infinito. Si $a \le b$, entonces $b \le a + b \le b + b = b$. Por lo tanto, a + b = b.
- Definición de multiplicación de cardinales.
- Observación: 1) (ab)c = a(bc), 2) ab = ba, 3) a0 = 0a = 0, 4) a1 = 1a = a.
- Teorema: si d es un cardinal infinito, entonces dd = d.
- Corolario: si d y e son cardinales con $d \neq 0$ y e infinito, entonces $e \leq de \leq ee \leq e$. En consecuencia, e = de = ee.
- Definición de exponenciación de cardinales
- Observación: 1) $a^0 = 1$ para todo a, 2) $0^a = 0$ si a > 0, 3) $1^d = 1$ para todo d, 4) si des infinito y n es finito, entonces $d^n = d$.
- Proposición: $2^{\aleph_0} = c$.
- Proposición: dados conjuntos A, B y C con $B \cap C = \emptyset$ hay biyecciones canónicas

$$(A \times B)^C \to A^C \times B^C, \quad A^{B \cup C} = A^B \times A^C \quad \text{y} \quad (A^B)^C \to A^{B \times C}.$$

- Corolario: para cada terna de números cardinales a, b y c vale que 1) $(ab)^c = a^c b^c$, 2) $a^{b+c} = a^b a^c \ y \ 3) \ (a^b)^c = a^{bc}$
- Proposición: dados cardinales a y b, con b infinito y $2 \le a \le 2^b$, es cierto que $a^b = 2^b$.
 Ejemplos: 1) $n^{\aleph_0} = 2^{\aleph_0}$, para todo número natural $n \ge 2$; 2) $\aleph_0^{\aleph_0} = 2^{\aleph_0}$.