ALGEBRA LINEAL - Práctica $N^{\circ}7$ - Primer Cuatrimestre de 2023 Subespacios invariantes - Forma de Jordan

Ejercicio 1.

- i) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por f(x,y) = (x+2y, 2x-2y). Hallar todos los subespacios de \mathbb{R}^2 que sean f-invariantes.
- ii) Sea $\theta \in \mathbb{R}$ y $g_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ la transformación \mathbb{R} -lineal cuya matriz en la base canónica es

$$|g_{\theta}|_E = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

(ver ejercicio 2 (iii) Práctica 3). Para cada θ estudiar si g_{θ} es diagonalizable, y hallar todos los subespacios de \mathbb{R}^2 que sean g_{θ} -invariantes. ¿Qué cambia si g_{θ} se interpreta en \mathbb{C}^2 y \mathbb{C} -lineal?

Ejercicio 2. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una tranformación lineal nilpotente tal que $f^n = 0$ y $f^{n-1} \neq 0$.

- i) Probar que para cada $0 \le i \le n$ existe un subespacio S_i de \mathbb{R}^n de dimensión i que es f-invariante.
- ii) Probar que existe un hiperplano de \mathbb{R}^n que es f-invariante pero que no admite un complemento f-invariante.

Ejercicio 3.

- i) Sea V un K-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal diagonalizable. Si S es un subespacio de V que es f-invariante, probar que $f:S\to S$ es diagonalizable.
- ii) Sean $A, B \in K^{n \times n}$ tales que A.B = B.A y sea $E_{\lambda}(A) = \{x \in K^n / A.x = \lambda.x\}$. Probar que $E_{\lambda}(A)$ es B-invariante.
- iii) Sean $A, B \in K^{n \times n}$ dos matrices diagonalizables tales que A.B = B.A. Probar que existe $C \in GL(n, K)$ tal que $C.A.C^{-1}$ y $C.B.C^{-1}$ son diagonales. (Es decir, A y B se pueden diagonalizar simultáneamente.)

Ejercicio 4. Sean $A, A' \in K^{n \times n}$ las siguientes matrices:

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}, \qquad A' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

- i) Probar que ambas son nilpotentes y que A es semejante a A'.
- ii) Dar bases B y B' de $\mathbb{R}_{n-1}[X]$ tales que la matriz de la derivación en la base B sea A y en la base B' sea A'.
- iii) Sea B una base de K^n y sea $f:K^n\to K^n$ tal que $|f|_B=A$. Probar que no existen subespacios propios f-invariantes S y T de K^n tales que $K^n=S\oplus T$.

Definiciones: Dados $v \in K^n$ y $A \in K^{n \times n}$, escribimos $< v >_A = < v, Av, A^2v, ... >$. Decimos que v es un vector cíclico para A si $< v >_A = K^n$. Si V es un espacio vectorial, $v \in V$ y $f: V \to V$ es una transformación lineal, definimos $< v >_f$ por $< f^i(v): i \ge 0 >$ y decimos que v es f-cíclico si $< v >_f = V$.

Ejercicio 5. Sea
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ -1 & 5 & 1 \end{pmatrix}$$
. ¿Existe $v \in \mathbb{R}^3$ tal que $\mathbb{R}^3 = \langle v \rangle_A$?

Ejercicio 6. Si $f: K^n \to K^n$ es una transformación lineal tal que f^2 tiene un vector cíclico (es decir, $K^n = \langle v \rangle_{f^2}$), probar que f tiene un vector cíclico. ¿Es válida la recíproca?

Ejercicio 7. Hallar la forma y una base de Jordan para cada una de las siguientes matrices:

Ejercicio 8. Sean A_i $(1 \le i \le 6)$ matrices en $\mathbb{C}^{8\times8}$ nilpotentes tales que $m_{A_i} = X^3$ $(1 \le i \le 6)$. ¿Es cierto que necesariamente dos de estas matrices son semejantes?

Ejercicio 9. Sean $A, B \in \mathbb{C}^{6 \times 6}$ nilpotentes tales que $m_A = m_B$ y $\operatorname{rg}(A) = \operatorname{rg}(B)$. Probar que A y B son semejantes. Es cierto esto en $\mathbb{C}^{7 \times 7}$?

Ejercicio 10. Hallar la forma y una base de Jordan de la matriz $A=(a_{ij})\in\mathbb{C}^{n\times n}$ donde

$$a_{ij} = \begin{cases} 0 & \text{si } i \le j, \\ 1 & \text{si } i > j. \end{cases}$$

Ejercicio 11.

- i) Decidir si existe $A \in \mathbb{C}^{8\times8}$ nilpotente tal que $\operatorname{rg}(A) = 6$, $\operatorname{rg}(A^2) = 4$, $\operatorname{rg}(A^3) = 3$, $\operatorname{rg}(A^4) = 1$ y $\operatorname{rg}(A^5) = 0$ simultáneamente. En caso afirmativo, exhibir una.
- ii) Decidir si existe $A \in \mathbb{C}^{16 \times 16}$ tal que $m_A(X) = X^5$, $\operatorname{rg}(A) = 9$, $\operatorname{rg}(A^2) = 5$, $\operatorname{rg}(A^3) = 3$, $\operatorname{rg}(A^4) = 1$ y $\operatorname{rg}(A^5) = 0$ simultáneamente. En caso afirmativo, exhibir una.

Ejercicio 12. Sea $f:\mathbb{C}^7\to\mathbb{C}^7$ una transformación lineal y sea B una base de \mathbb{C}^7 tal que

$$|f|_B = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}.$$

- i) Hallar \mathcal{X}_f y m_f .
- ii) Sea λ un autovalor de f y sea $m = \operatorname{mult}(\lambda, \mathcal{X}_f)$. Se definen $E_{\lambda} = \{v \in \mathbb{C}^7 / f(v) = \lambda . v\}$ y $V_{\lambda} = \{v \in \mathbb{C}^7 / (\lambda Id f)^m(v) = 0\} = \operatorname{Nu}((\lambda Id f)^m)$. Para qué autovalores λ de f se tiene que $E_{\lambda} = V_{\lambda}$?
- iii) Para cada autovalor λ de f, ¿cuál es la menor potencia k tal que $V_{\lambda} = \text{Nu}((\lambda \operatorname{Id} f)^k)$?
- iv) Si λ es un autovalor de f, sea f_{λ} la restricción de $\lambda Id f$ a V_{λ} . Calcular dim $(\text{Im}(f_{\lambda}))$ y dim $(\text{Im}(f_{\lambda}^2))$ para cada λ .

Ejercicio 13. Hallar la forma y una base de Jordan de cada una de las siguientes matrices:

$$\begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix} \quad ; \quad \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix} \quad ; \quad \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix} \quad ; \quad \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{pmatrix} \quad ; \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ejercicio 14. Sea $V \subseteq C^{\infty}(\mathbb{R})$ el subespacio $V = \langle e^x, x e^x, x^2 e^x, e^{2x} \rangle$. Sea $\delta : V \to V$ la transformación lineal definida por $\delta(f) = f'$. Hallar la forma y una base de Jordan para δ .

Ejercicio 15. Sean $A, B \in \mathbb{C}^{4\times 4}$ las matrices

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix} \quad , \quad B = \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Decidir si A y B son semejantes.

Ejercicio 16. Sea $A \in \mathbb{C}^{n \times n}$. Probar que A y A^t son semejantes.

Ejercicio 17. Sean $A, B \in \mathbb{C}^{5\times 5}$ tales que $\mathcal{X}_A = \mathcal{X}_B = (X-1)^3(X-3)^2$ y $m_A = m_B$. Decidir si, necesariamente, A es semejante a B.

Ejercicio 18. Encontrar todas las formas de Jordan posibles de la matriz $A \in \mathbb{C}^{n \times n}$ en cada uno de los siguientes casos:

i)
$$\mathcal{X}_A(X) = (X-2)^4(X-3)^2$$
; $m_A(X) = (X-2)^2(X-3)^2$

ii)
$$\mathcal{X}_A(X) = (X-7)^5$$
; $m_A(X) = (X-7)^2$

iii)
$$\mathcal{X}_A(X) = (X-2)^7$$
; $m_A(X) = (X-2)^3$

iv)
$$\mathcal{X}_A(X) = (X-3)^4(X-5)^4$$
; $m_A(X) = (X-3)^2(X-5)^2$

Ejercicio 19. Sea $A \in \mathbb{C}^{15 \times 15}$ una matriz con autovalores λ_1 , λ_2 y λ_3 y que cumple, simultáneamente:

$$\operatorname{rg}(A - \lambda_1 I) = 13$$
, $\operatorname{rg}(A - \lambda_1 I)^2 = 11$, $\operatorname{rg}(A - \lambda_1 I)^3 = 10$, $\operatorname{rg}(A - \lambda_1 I)^4 = 10$, $\operatorname{rg}(A - \lambda_2 I) = 13$, $\operatorname{rg}(A - \lambda_2 I)^2 = 11$, $\operatorname{rg}(A - \lambda_2 I)^3 = 10$, $\operatorname{rg}(A - \lambda_2 I)^4 = 9$, $\operatorname{rg}(A - \lambda_3 I) = 13$, $\operatorname{rg}(A - \lambda_3 I)^2 = 12$, $\operatorname{rg}(A - \lambda_3 I)^3 = 11$.

Hallar su forma de Jordan.

Ejercicio 20. Dar la forma de Jordan de una matriz $A \in \mathbb{C}^{14 \times 14}$ que verifica, simultáneamente:

$$m_A = (X - \lambda_1)^2 (X - \lambda_2) (X - \lambda_3)^2 (X - \lambda_4)^3$$
 (con $\lambda_i \neq \lambda_j$ si $i \neq j$),
 $\operatorname{rg}(A - \lambda_1 I) = 11$, $\operatorname{rg}(A - \lambda_1 I)^2 = 10$, $\operatorname{rg}(A - \lambda_3 I) = 12$, $\operatorname{rg}(A - \lambda_3 I)^2 = 10$ y
 $\operatorname{rg}(A - \lambda_4 I) = 13$.

Ejercicio 21. Calcular las posibles formas de Jordan de una matriz $A \in \mathbb{C}^{5 \times 5}$ sabiendo que cumple simultáneamente:

- $X^2 6X + 9 \mid m_A(X)$,
- $\operatorname{rg}(A+I)=3$ y
- $(A-3I)^3(A+I)^3(A-I)=0.$

Ejercicio 22. Sean $x, y \in \mathbb{C}^n$ y $A \in \mathbb{C}^{n \times n}$, $A = (a_{ij})$ con $a_{ij} = x_i.y_j$.

- i) Calcular todos los autovalores y autovectores de A.
- ii) Calcular las posibles formas de Jordan de A.

Ejercicio 23. Sea $A \in \mathbb{C}^{6\times 6}$ una matriz tal que $m_A = X^6$ y sea $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ una base de Jordan para A. Calcular la forma y una base de Jordan para las matrices A^2 , A^3 , A^4 y A^5 .

Ejercicio 24. Dada la matriz
$$A = \begin{pmatrix} 5 & 1 & 4 \\ -1 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, encontrar $B \in \mathbb{Q}^{3 \times 3}$ tal que $B^2 = A$.

Ejercicio 25. Para cada una de las siguientes matrices A, calcular A^n para todo $n \in \mathbb{N}$:

i)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 1 \\ -1 & -1 & 2 & 0 & 1 \\ -1 & 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$

Ejercicio 26. Sean $\alpha, \beta \in \mathbb{R}$. Se define la sucesión $\{a_n\}_{n \in \mathbb{N}_0}$ de la siguiente manera:

$$\begin{cases} a_0 = \alpha, \ a_1 = \beta \\ a_{n+2} = 4a_{n+1} - 4a_n \quad \forall \ n \in \mathbb{N}_0. \end{cases}$$

Hallar una fórmula general para el término $a_n, \ \forall n \in \mathbb{N}_0.$

Ejercicio 27. Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'_1(t) &= 3x_1(t) - x_2(t) \\ x'_2(t) &= x_1(t) + x_2(t) \\ x'_3(t) &= -x_2(t) + 2x_3(t) \end{cases}$$

con condiciones iniciales $x_1(0) = 1$, $x_2(0) = 2$, $x_3(0) = 1$.