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Abstract. Restricted Boltzmann machines (RBMs) are probabilistic
graphical models that can be interpreted as stochastic neural networks.
The increase in computational power and the development of faster learn-
ing algorithms have made them applicable to relevant machine learning
problems. They attracted much attention recently after being proposed
as building blocks of multi-layer learning systems called deep belief net-
works. This tutorial introduces RBMs as undirected graphical models.
The basic concepts of graphical models are introduced first, however,
basic knowledge in statistics is presumed. Different learning algorithms
for RBMs are discussed. As most of them are based on Markov chain
Monte Carlo (MCMC) methods, an introduction to Markov chains and
the required MCMC techniques is provided.

1 Introduction

Boltzmann machines (BMs) have been introduced as bidirectionally connected
networks of stochastic processing units, which can be interpreted as neural net-
work models [1,16]. A BM can be used to learn important aspects of an unknown
probability distribution based on samples from this distribution. In general, this
learning process is difficult and time-consuming. However, the learning problem
can be simplified by imposing restrictions on the network topology, which leads
us to restricted Boltzmann machines (RBMs, [34]), the topic of this tutorial.

A (restricted) BM is a parameterized generative model representing a prob-
ability distribution. Given some observations, the training data, learning a BM
means adjusting the BM parameters such that the probability distribution repre-
sented by the BM fits the training data as well as possible. Boltzmann machines
consist of two types of units, so called visible and hidden neurons, which can be
thought of as being arranged in two layers. The visible units constitute the first
layer and correspond to the components of an observation (e.g., one visible unit
for each pixel of a digital input image). The hidden units model dependencies
between the components of observations (e.g., dependencies between pixels in
images). They can be viewed as non-linear feature detectors [16].

Boltzmann machines can also be regarded as particular graphical models [22],
more precisely undirected graphical models also known as Markov random fields.
The embedding of BMs into the framework of probabilistic graphical models
provides immediate access to a wealth of theoretical results and well-developed
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algorithms. Therefore, our tutorial introduces RBMs from this perspective. Com-
puting the likelihood of an undirected model or its gradient for inference is in
general computationally intensive, and this also holds for RBMs. Thus, sampling
based methods are employed to approximate the likelihood and its gradient.
Sampling from an undirected graphical model is in general not straightforward,
but for RBMs Markov chain Monte Carlo (MCMC) methods are easily appli-
cable in the form of Gibbs sampling, which will be introduced in this tutorial
along with basic concepts of Markov chain theory.

After successful learning, an RBM provides a closed-form representation of
the distribution underlying the observations. It can be used to compare the
probabilities of (unseen) observations and to sample from the learnt distribution
(e.g., to generate image textures [25,21]), in particular from marginal distribu-
tions of interest. For example, we can fix some visible units corresponding to a
partial observation and sample the remaining visible units for completing the
observation (e.g., to solve an image inpainting task [21]).

Boltzmann machines have been proposed in the 1980s [1,34]. Compared to
the times when they were first introduced, RBMs can now be applied to more
interesting problems due to the increase in computational power and the de-
velopment of new learning strategies [15]. Restricted Boltzmann machines have
received a lot of attention recently after being proposed as building blocks of
multi-layer learning architectures called deep belief networks (DBNs, [19,17]).
The idea is that the hidden neurons extract relevant features from the observa-
tions. These features can serve as input to another RBM. By stacking RBMs in
this way, one can learn features from features in the hope of arriving at a high
level representation.

It is an important property that single as well as stacked RBMs can be rein-
terpreted as deterministic feed-forward neural networks. Than they are used as
functions from the domain of the observations to the expectations of the la-
tent variables in the top layer. Such a function maps the observations to learnt
features, which can, for example, serve as input to a supervised learning sys-
tem. Further, the neural network corresponding to a trained RBM or DBN can
be augmented by an output layer, where units in the new added output layer
represent labels corresponding to observations. Then the model corresponds to
a standard neural network for classification or regression that can be further
trained by standard supervised learning algorithms [31]. It has been argued that
this initialization (or unsupervised pretraining) of the feed-forward neural net-
work weights based on a generative model helps to overcome problems observed
when training multi-layer neural networks [19].

This introduction to RBMs is meant to supplement existing tutorials, such as
the highly recommended review by Bengio [2], by providing more background
information on Markov random fields and MCMC methods in Section 2 and
Section 3, respectively. However, basic knowledge in statistics is presumed. We
put an emphasis on topics that are – based on our experience – sometimes not
familiar to people starting with RBMs. Restricted Boltzmann machines will be
presented in Section 4. Section 5 will consider RBM training algorithms based
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on approximations of the log-likelihood gradient. This includes a discussion of
contrastive divergence learning [15] as well as parallel tempering [10]. We will
close by hinting at generalizations of RBMs in sections 6 and 7.

2 Graphical Models

Probabilistic graphical models describe probability distributions by mapping
conditional dependence and independence properties between random variables
on a graph structure (two sets of random variables X1 and X2 are condi-
tionally independent given a set of random variables X3 if p(X1,X2|X3) =
p(X1|X3)p(X2|X3)). Visualization by graphs can help to develop, understand
and motivate probabilistic models. Furthermore, complex computations (e.g.,
marginalization) can be derived efficiently by using algorithms exploiting the
graph structure.

There exist graphical models associated with different kind of graph struc-
tures, for example factor graphs, Bayesian networks associated with directed
graphs, and Markov random fields, which are also called Markov networks or
undirected graphical models. This tutorial focuses on the latter. A general in-
troduction to graphical models for machine learning can, for example be found
in [5]. The most comprehensive resource on graphical models is the textbook by
Koller and Friedman [22].

2.1 Undirected Graphs and Markov Random Fields

First, we will summarize some fundamental concepts from graph theory. An
undirected graph is a tuple G = (V,E), where V is a finite set of nodes and E is
a set of undirected edges. An edge consists out of a pair of nodes from V . If there
exists an edge between two nodes v and w, i.e. {v, w} ∈ E, w belongs to the
neighborhood of v and vice versa. The neighborhood Nv := {w ∈ V : {w, v} ∈ E}
of v is defined by the set of nodes connected to v. A clique is a subset of V in
which all nodes are pairwise connected. A clique is called maximal if no node
can be added such that the resulting set is still a clique. In the following we will
denote by C the set of all maximal cliques of an undirected graph. We call a
sequence of nodes v1, v2, . . . , vm ∈ V , with {vi, vi+1} ∈ E for i = 1, . . . ,m− 1 a
path from v1 to vm. A set V ⊂ V separates two nodes v /∈ V and w /∈ V , if every
path from v to w contains a node from V .

We now associate a random variable Xv taking values in a state space Λv
with each node v in an undirected graph G = (V,E). To ease the notation, we
assume Λv = Λ for all v ∈ V . The random variables X = (Xv)v∈V are called
Markov random field (MRF) if the joint probability distribution p fulfills the
(global) Markov property w.r.t. the graph: For all disjunct subsets A,B,S ⊂ V ,
where all nodes in A and B are separated by S the variables (Xa)a∈A and
(Xb)b∈B are conditional independent given (Xs)s∈S , i.e. for all x ∈ Λ|V | it holds
p ((xa)a∈A|(xt)t∈S∪B) = p ((xa)a∈A|(xt)t∈S). A set of nodes MB(v) is called
the Markov blanket of node v, if for any set of nodes B with v �∈ B we have
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p(v | MB(v),B) = p(v | MB(v)). This means that v is conditional independent
from any other variables given MB(v). In an MRF, the Markov blanket MB(v) is
given by the neighborhood Nv of v, a fact that is also referred to as local Markov
property.

Since conditional independence of random variables and the factorization
properties of the joint probability distribution are closely related, one can ask
if there exists a general factorization form of the distributions of MRFs. An an-
swer to this question is given by the Hammersley-Clifford Theorem (for rigorous
formulations and proofs we refer to [23,22]). The theorem states that a strictly
positive distribution p satisfies the Markov property w.r.t. an undirected graph
G if and only if p factorizes over G. A distribution is said to factorize about an
undirected graph G with maximal cliques C if there exists a set of non-negative
functions {ψC}C⊂C, called potential functions, with

∀x, x̂ ∈ Λ|V | : (xc)c∈C = (x̂c)c∈C ⇒ ψC(x) = ψC(x̂) (1)

and

p(x) =
1

Z

∏

C∈C
ψC(x). (2)

The normalization constant Z =
∑

x

∏
C∈C ψC(xC) is called partition function.

If p is strictly positive, the same holds for the potential functions. Thus we
can write

p(x) =
1

Z

∏

C∈C
ψC(xC) =

1

Z
e
∑

C∈C lnψC(xC) =
1

Z
e−E(x) , (3)

where we call E :=
∑
C∈C lnψC(xC) the energy function. Thus, the probability

distribution of every MRF can be expressed in the form given by (3), which is
also called Gibbs distribution.

2.2 Unsupervised Learning

Unsupervised learning means learning (important aspects of) an unknown dis-
tribution q based on sample data. This includes finding new representations of
data that foster learning, generalization, and communication. If we assume that
the structure of the graphical model is known and the energy function belongs to
a known family of functions parameterized by θ, unsupervised learning of a data
distribution with an MRF means adjusting the parameters θ. We write p(x|θ)
when we want to emphasize the dependency of a distribution on its parameters.

We consider training data S = {x1, . . . ,x�}. The data samples are assumed
to be independent and identically distributed (i.i.d.). That is, they are drawn
independently from some unknown distribution q. A standard way of estimating
the parameters of a statistical model is maximum-likelihood estimation. Applied
to MRFs, this corresponds to finding the MRF parameters that maximize the
probability of S under the MRF distribution, i.e. training corresponds to finding
the parameters θ that maximize the likelihood given the training data. The
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likelihood L : Θ → R of an MRF given the data set S maps parameters θ from

a parameter space Θ to L(θ |S) =
�∏
i=1

p(xi|θ). Maximizing the likelihood is the

same as maximizing the log-likelihood given by

lnL(θ |S) = ln

�∏

i=1

p(xi|θ) =
�∑

i=1

ln p(xi|θ) . (4)

For the Gibbs distribution of an MRF it is in general not possible to find the
maximum likelihood parameters analytically. Thus, numerical approximation
methods have to be used, for example gradient ascent which is described below.

Maximizing the likelihood corresponds to minimizing the distance between
the unknown distribution q underlying S and the distribution p of the MRF
in terms of the Kullback-Leibler-divergence (KL-divergence), which for a finite
state space Ω is given by:

KL(q||p) =
∑

x∈Ω
q(x) ln

q(x)

p(x)
=

∑

x∈Ω
q(x) ln q(x)−

∑

x∈Ω
q(x) ln p(x) (5)

The KL-divergence is a (non-symmetric) measure of the difference between two
distributions. It is always positive and zero if and only if the distributions are
the same. As becomes clear by equation (5) the KL-divergence can be expressed
as the difference between the entropy of q and a second term. Only the latter
depends on the parameters subject to optimization. Approximating the expec-
tation over q in this term by the training samples from q results in the log-
likelihood. Therefore, maximizing the log-likelihood corresponds to minimizing
the KL-divergence.

Optimization by Gradient Ascent. If it is not possible to find parameters
maximizing the likelihood analytically, the usual way to find them is gradient
ascent on the log-likelihood. This corresponds to iteratively updating the param-
eters θ(t) to θ(t+1) based on the gradient of the log-likelihood. Let us consider
the following update rule:

θ(t+1) = θ(t) + η
∂

∂θ(t)

(
N∑

i=1

lnL(θ(t)|xi)
)
−λθ(t) + νΔθ(t−1)

︸ ︷︷ ︸
:= Δθ(t)

(6)

If the constants λ ∈ R
+
0 and ν ∈ R

+
0 are set to zero, we have vanilla gradient

ascent. The constant η ∈ R
+ is the learning rate. As we will see later, it can

be desirable to strive for models with weights having small absolute values.
To achieve this, we can optimize an objective function consisting of the log-
likelihood minus half of the norm of the parameters ‖θ‖2/2 weighted by λ. This
method called weight decay penalizes weights with large magnitude. It leads to
the −λθ(t) term in our update rule (6). In a Bayesian framework, weight decay
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can be interpreted as assuming a zero-mean Gaussian prior on the parameters.
The update rule can be further extended by amomentum termΔθ(t−1), weighted
by the parameter ν. Using a momentum term helps against oscillations in the
iterative update procedure and can speed-up the learning process as known from
feed-forward neural network training [31].

Introducing Latent Variables. Suppose we want to model an m-dimensional
unknown probability distribution q (e.g., each component of a sample corresponds
to one of m pixels of an image). Typically, not all variables X = (Xv)v∈V in an
MRF need to correspond to some observed component, and the number of nodes
is larger thanm. We splitX into visible (or observed) variables V = (V1, . . . , Vm)
corresponding to the components of the observations and latent (or hidden) vari-
ables H = (H1, . . . , Hn) given by the remaining n = |V | − m variables. Using
latent variables allows to describe complex distributions over the visible variables
by means of simple (conditional) distributions. In this case the Gibbs distribu-
tion of an MRF describes the joint probability distribution of (V ,H) and one is
usually interested in the marginal distribution of V which is given by

p(v) =
∑

h

p(v,h) =
1

Z

∑

h

e−E(v,h) , (7)

where Z =
∑

v,h e
−E(v,h). While the visible variables correspond to the com-

ponents of an observation, the latent variables introduce dependencies between
the visible variables (e.g., between pixels of an input image).

Log-Likelihood Gradient of MRFs with Latent Variables. Restricted
Boltzmann machines are MRFs with hidden variables and RBM learning algo-
rithms are based on gradient ascent on the log-likelihood. For a model of the
form (7) with parameters θ, the log-likelihood given a single training example v
is

lnL(θ |v) = ln p(v | θ) = ln
1

Z

∑

h

e−E(v,h) = ln
∑

h

e−E(v,h) − ln
∑

v,h

e−E(v,h)

(8)
and for the gradient we get:

∂lnL(θ |v)
∂θ

=
∂

∂θ

(
ln
∑

h

e−E(v,h)

)
− ∂

∂θ

(
ln
∑

v,h

e−E(v,h)

)

= − 1∑
h

e−E(v,h)

∑

h

e−E(v,h) ∂E(v,h)

∂θ
+

1∑
v,h

e−E(v,h)

∑

v,h

e−E(v,h) ∂E(v,h)

∂θ

= −
∑

h

p(h |v)∂E(v,h)

∂θ
+
∑

v,h

p(v,h)
∂E(v,h)

∂θ
(9)

In the last step we used that the conditional probability can be written in the
following way:
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p(h |v) = p(v,h)

p(v)
=

1
Z e

−E(v,h)

1
Z

∑
h

e−E(v,h)
=

e−E(v,h)

∑
h

e−E(v,h)
(10)

Note that the last expression of equality (9) is the difference of two expectations:
the expected values of the energy function under the model distribution and
under the conditional distribution of the hidden variables given the training ex-
ample. Directly calculating this sums, which run over all values of the respective
variables, leads to a computational complexity which is in general exponential
in the number of variables of the MRF. To avoid this computational burden, the
expectations can be approximated by samples drawn from the corresponding
distributions based on MCMC techniques.

3 Markov Chains and Markov Chain Monte Carlo
Techniques

Markov chains play an important role in RBM training because they provide a
method to draw samples from ’complex’ probability distributions like the Gibbs
distribution of an MRF. This section will serve as an introduction to some funda-
mental concepts of Markov chain theory. A detailed introduction can be found,
for example, in [6] and the aforementioned textbooks [5,22]. The section will
describe Gibbs sampling as an MCMC technique often used for MRF training
and in particular for training RBMs.

3.1 Definition of a Markov Chain and Convergence to Stationarity

A Markov chain is a time discrete stochastic process for which the Markov
property holds, that is, a family of random variables X = {X(k)|k ∈ N0} which
take values in a (in the following considerations finite) set Ω and for which
∀k ≥ 0 and ∀j, i, i0, . . . , ik−1 ∈ Ω it holds

p
(k)
ij := P

(
X(k+1) = j|X(k) = i,X(k−1) = ik−1, . . . , X

(0) = i0

)
(11)

= P
(
X(k+1) = j|X(k) = i

)
. (12)

This means that the next state of the system depends only on the current state

and not on the sequence of events that preceded it. If for all k ≥ 0 the p
(k)
ij

have the same value pij , the chain is called homogeneous and the matrix P =
(pij)i,j∈Ω is called transition matrix of the homogeneous Markov chain.

If the starting distribution μ(0) (i.e., the probability distribution of X(0)) is
given by the probability vector μ(0) = (μ(0)(i))i∈Ω , with μ(0)(i) = P (X(0) = i),
the distribution μ(k) of X(k) is given by μ(k) T = μ(0) TPk .

A distribution π for which it holds πT = πTP is called stationary distribution.
If the Markov chain for any time k reaches the stationary distribution μ(k) = π
all subsequent states will be distributed accordingly, that is, μ(k+n) = π for
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all n ∈ N. A sufficient (but not necessary) condition for a distribution π to
be stationary w.r.t. a Markov chain described by the transition probabilities
pij , i, j ∈ Ω is that ∀i, j ∈ Ω it holds:

π(i)pij = π(j)pji . (13)

This is called the detailed balance condition.
Especially relevant are Markov chains for which it is known that there exists

an unique stationary distribution. For finite Ω this is the case if the Markov
chain is irreducible. A Markov chain is irreducible if one can get from any state
in Ω to any other in a finite number of transitions or more formally ∀i, j ∈ Ω
∃k > 0 with P (X(k) = j|X(0) = i) > 0.

A chain is called aperiodic if for all i ∈ Ω the greatest common divisor of
{k|P (X(k) = i|X(0) = i) > 0 ∧ k ∈ N0} is 1. One can show that an irreducible
and aperiodic Markov chain on a finite state space is guarantied to converge
to its stationary distribution (see, e.g., [6]). That is, for an arbitrary starting
distribution μ it holds

lim
k→∞

dV (μ
T Pk,πT ) = 0 , (14)

where dV is the distance of variation. For two distributions α and β on a finite
state space Ω, the distance of variation is defined as

dV (α,β) =
1

2
|α− β| = 1

2

∑

x∈Ω
|α(x) − β(x)| . (15)

To ease the notation, we allow both row and column probability vectors as
arguments of the functions in (15).

Markov chain Monte Carlo methods make use of this convergence theorem for
producing samples from certain probability distribution by setting up a Markov
chain that converges to the desired distributions. Suppose you want to sample
from a distribution q with a finite state space. Then you construct an irreducible
and aperiodic Markov chain with stationary distribution π = q. This is a non-
trivial task. If t is large enough, a sample X(t) from the constructed chain is
then approximately a sample from π and therefore from q. Gibbs Sampling [13]
is such a MCMC method and will be described in the following section.

3.2 Gibbs Sampling

Gibbs Sampling belongs to the class of Metropolis-Hastings algorithms [14]. It is
a simple MCMC algorithm for producing samples from the joint probability dis-
tribution of multiple random variables. The basic idea is to update each variable
subsequently based on its conditional distribution given the state of the others.
We will describe it in detail by explaining how Gibbs sampling can be used to
simulate the Gibbs distribution of an MRF.

We consider an MRF X = (X1, . . . , XN ) w.r.t. a graph G = (V,E), where
V = {1, . . . , N} for the sake of clearness of notation. The random variables Xi,
i ∈ V take values in a finite set Λ and π(x) = 1

Ze
−E(x) is the joint probability
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distribution of X. Furthermore, if we assume that the MRF changes its state
during time, we can consider X = {X(k)|k ∈ N0} as a Markov chain taking

values in Ω = ΛN where X(k) = (X
(k)
1 , . . . , X

(k)
N ) describes the state of the

MRF at time k ≥ 0. At each transition step we now pick a random variable Xi,
i ∈ V with a probability q(i) given by a strictly positive probability distribution
q on V and sample a new value for Xi based on its conditional probability
distribution given the state (xv)v∈V \i of all other variables (Xv)v∈V \i, i.e. based
on π

(
Xi|(xv)v∈V \i

)
= π (Xi|(xw)w∈Ni). Therefore, the transition probability

pxy for two states x,y of the MRF X with x �= y is given by:

pxy =

{
q(i)π

(
yi|(xv)v∈V \i

)
, if ∃i ∈ V so that ∀v ∈ V with v �= i: xv = yv

0, else .

(16)
And the probability, that the state of the MRF x stays the same, is given by:

pxx =
∑

i∈V
q(i)π

(
xi|(xv)v∈V \i

)
. (17)

It is easy to see that the joint distribution π of the MRF is the stationary
distribution of the Markov chain defined by these transition probabilities by
showing that the detailed balance condition (13) holds: For x = y this follows
directly. If x and y differ in the value of more than one random variable it follows
from the fact that pyx = pxy = 0. Assume that x and y differ only in the state
of exactly one variable Xi, i.e., yj = xj for j �= i and yi �= xi, then it holds:

π(x)pxy = π(x)q(i)π
(
yi|(xv)v∈V \i

)
= π

(
xi, (xv)v∈V \i

)
q(i)

π
(
yi, (xv)v∈V \i

)

π
(
(xv)v∈V \i

)

= π
(
yi, (xv)v∈V \i

)
q(i)

π
(
xi, (xv)v∈V \i

)

π
(
(xv)v∈V \i

)

= π(y)q(i)π
(
xi|(xv)v∈V \i

)
= π(y)pyx. (18)

Since π is strictly positive so are the conditional probability distributions of
the single variables. Thus, it follows that every single variable Xi can take ev-
ery state xi ∈ Λ in a single transition step and thus every state of the whole
MRF can reach any other in ΛN in a finite number of steps and the Markov
chain is irreducible. Furthermore it follows from the positivity of the conditional
distributions that pxx > 0 for all x ∈ ΛN and thus that the Markov chain is
aperiodic. Aperiodicity and irreducibility guaranty that the chain converges to
the stationary distribution π.

In practice the single random variables to be updated are usually not chosen
at random based on a distribution q but subsequently in fixed predefined order.
The corresponding algorithm is often referred to as periodic Gibbs Sampler. If
P is the transition matrix of the Gibbs chain, the convergence rate of the periodic
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Gibbs sampler to the stationary distribution of the MRF is bounded by the
following inequality (see for example [6]):

|μPk − π| ≤ 1

2
|μ− π|(1− e−N�)k, (19)

where
 = supl∈V δl and δl = sup{|E(x)−E(y)|;xi = yi∀i ∈ V with i �= l}. Here
μ is an arbitrary starting distribution and 1

2 |μ− π| is the distance in variation
as defined in (15).

4 Restricted Boltzmann Machines

A RBM (also denoted as Harmonium [34]) is an MRF associated with a bipar-
tite undirected graph as shown in Fig. 1. It consists of m visible units V =
(V1, ..., Vm) to represent observable data and n hidden units H = (H1, ..., Hn)
to capture dependencies between observed variables. In binary RBMs, our focus
in this tutorial, the random variables (V ,H) take values (v,h) ∈ {0, 1}m+n

and the joint probability distribution under the model is given by the Gibbs
distribution p(v,h) = 1

Z e
−E(v,h) with the energy function

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi . (20)

For all i ∈ {1, ..., n} and j ∈ {1, ...,m}, wij is a real valued weight associated
with the edge between units Vj and Hi and bj and ci are real valued bias terms
associated with the jth visible and the ith hidden variable, respectively.

Fig. 1. The undirected graph of an RBM with n hidden and m visible variables

The graph of an RBM has only connections between the layer of hidden and
visible variables but not between two variables of the same layer. In terms of
probability this means that the hidden variables are independent given the state
of the visible variables and vice versa:
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p(h |v) =
n∏

i=1

p(hi |v) and p(v |h) =
m∏

i=1

p(vi |h) . (21)

The absence of connections between hidden variables makes the marginal distri-
bution (7) of the visible variables easy to calculate:

p(v) =
1

Z

∑

h

p(v,h) =
1

Z

∑

h

e−E(v,h)

=
1

Z

∑

h1

∑

h2

· · ·
∑

hn

e

m∑

j=1
bjvj

n∏

i=1

e
hi

(
ci+

m∑

j=1
wijvj

)

=
1

Z
e

m∑

j=1

bjvj ∑

h1

e
h1

(
c1+

m∑

j=1

w1jvj

)
∑

h2

e
h2

(
c2+

m∑

j=1

w2jvj

)
· · ·

∑

hn

e
hn

(
cn+

m∑

j=1

wnjvj

)

=
1

Z
e

m∑

j=1

bjvj
n∏

i=1

∑

hi

e
hi

(
ci+

m∑

j=1

wijvj

)

=
1

Z

m∏

j=1

ebjvj
n∏

i=1

(
1 + e

ci+
m∑

j=1

wijvj
)

(22)

This equation shows why a (marginalized) RBM can be regarded as a product of
experts model [15,39], in which a number of “experts” for individual components
of the observations are combined multiplicatively.

Any distribution on {0, 1}m can be modeled arbitrarily well by an RBM with
m visible and k+1 hidden units, where k denotes the cardinality of the support
set of the target distribution, that is, the number of input elements from {0, 1}m
that have a non-zero probability of being observed [24]. It has been shown re-
cently that even less units can be sufficient depending on the patterns in the
support set [30].

The RBM can be interpreted as a stochastic neural network, where nodes
and edges correspond to neurons and synaptic connections, respectively. The
conditional probability of a single variable being one can be interpreted as the
firing rate of a (stochastic) neuron with sigmoid activation function σ(x) =
1/(1 + e−x), because it holds:

p(Hi = 1 |v) = σ

( m∑

j=1

wijvj + ci

)
(23)

and

p(Vj = 1 |h) = σ

( n∑

i=1

wijhi + bj

)
. (24)
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To see this, let v−l denote the state of all visible units except the lth one and
let us define

αl(h) := −
n∑

i=1

wilhi − bl (25)

and

β(v−l,h) := −
n∑

i=1

m∑

j=1,j 	=l
wijhivj −

m∑

j=1,j 	=l
bivi −

n∑

i=1

cihi . (26)

Then E(v,h) = β(v−l,h) + vlαl(h), where vlαl(h) collects all terms involving
vl and we can write [2]:

p(Vl = 1 |h) = p(Vl = 1 |v−l,h) =
p(Vl = 1,v−l,h)

p(v−l,h)

=
e−E(vl=1,v−l,h)

e−E(vl=1,v−l,h) + e−E(vl=0,v−l,h)
=

e−β(v−l,h)−1·αl(h)

e−β(v−l,h)−1·αl(h) + e−β(v−l,h)−0·αl(h)

=
e−β(v−l,h) · e−αl(h)

e−β(v−l,h) · e−αl(h) + e−β(v−l,h)
=

e−β(v−l,h) · e−αl(h)

e−β(v−l,h) · (e−αl(v−l,h) + 1
)

=
e−αl(v−l,h)

e−αl(v−l,h) + 1
=

1
eαl(h)

1
eαl(h) + 1

=
1

1 + eαl(v−l,h)

= σ(−αl(h)) = σ

( n∑

i=1

wilhi + bj

)
(27)

The independence between the variables in one layer makes Gibbs sampling
especially easy: Instead of sampling new values for all variables subsequently, the
states of all variables in one layer can be sampled jointly. Thus, Gibbs sampling
can be performed in just two sub steps: sampling a new state h for the hidden
neurons based on p(h|v) and sampling a state v for the visible layer based on
p(v|h). This is also referred to as block Gibbs sampling.

As mentioned in the introduction, an RBM can be reinterpreted as a standard
feed-forward neural network with one layer of non-linear processing units. From
this perspective the RBM is viewed as a deterministic function {0, 1}m → R

n

that maps an input v ∈ {0, 1}m to y ∈ R
n with yi = p(Hi = 1|v). That is, an

observation is mapped to the expected value of the hidden neurons given the
observation.

4.1 The Gradient of the Log-Likelihood

The log-likelihood gradient of an MRF can be written as the sum of two ex-
pectations, see (9). For RBMs the first term of (9) (i.e., the expectation of the
energy gradient under the conditional distribution of the hidden variables given
a training sample v) can be computed efficiently because it factorizes nicely. For
example, w.r.t. the parameter wij we get:
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∑

h

p(h |v)∂E(v,h)

∂wij
=

∑

h

p(h |v)hivj

=
∑

h

n∏

k=1

p(hk |v)hivj =
∑

hi

∑

h−i

p(hi |v)p(h−i |v)hivj

=
∑

hi

p(hi |v)hivj
∑

h−i

p(h−i|v)
︸ ︷︷ ︸

=1

= p(Hi = 1|v)vj = σ

( m∑

j=1

wijvj + ci

)
vj (28)

Since the second term in (9) can also be written as
∑
v
p(v)

∑
h

p(h |v)∂E(v,h)
∂θ or

∑
h

p(h)
∑
v
p(v |h)∂E(v,h)

∂θ we can also reduce its computational complexity by

applying the same kind of factorization to the inner sum, either factorizing over
the hidden variables as shown above or factorizing over the visible variables in an
analogous way. However, the computation remains intractable for regular sized
RBMs because its complexity is still exponential in the size of the smallest layer
(the outer sum still runs over either 2m or 2n states).

Using the factorization trick (28) the derivative of the log-likelihood of a single
training pattern v w.r.t. the weight wij becomes

∂lnL(θ |v)
∂wij

= −
∑

h

p(h |v)∂E(v,h)

∂wij
+
∑

v,h

p(v,h)
∂E(v,h)

∂wij

=
∑

h

p(h |v)hivj −
∑

v

p(v)
∑

h

p(h |v)hivj

= p(Hi = 1|v)vj −
∑

v

p(v)p(Hi = 1|v)vj . (29)

For the mean of this derivative over a training set S = {v1, . . . ,v�} often the
following notations are used:

1

�

∑

v∈S

∂lnL(θ |v)
∂wij

=
1

�

∑

v∈S

[
−Ep(h |v)

[
∂E(v,h)

∂wij

]
+ Ep(h,v)

[
∂E(v,h)

∂wij

]]

=
1

�

∑

v∈S

[
Ep(h |v) [vihj]− Ep(h,v) [vihj ]

]

= 〈vihj〉p(h |v)q(v) − 〈vihj〉p(h,v) (30)

with q denoting the empirical distribution. This gives the often stated rule:

∑

v∈S

∂lnL(θ |v)
∂wij

∝ 〈vihj〉data − 〈vihj〉model (31)

Analogously to (29) we get the derivatives w.r.t. the bias parameter bj of the
jth visible variable

∂lnL(θ |v)
∂bj

= vj −
∑

v

p(v)vj (32)
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and w.r.t. the bias parameter ci of the ith hidden variable

∂lnL(θ |v)
∂ci

= p(Hi = 1|v)−
∑

v

p(v)p(Hi = 1|v) . (33)

To avoid the exponential complexity of summing over all values of the visible
variables (or all values of the hidden if one decides to factorize over the visible
variables beforehand) when calculating the second term of the log-likelihood
gradient – or the second terms of (29), (32), and (33) – one can approximate
this expectation by samples from the model distribution. These samples can
be obtained by Gibbs sampling. This requires running the Markov chain “long
enough” to ensure convergence to stationarity. Since the computational costs
of such an MCMC approach are still too large to yield an efficient learning
algorithm common RBM learning techniques – as described in the following
section – introduce additional approximations.

5 Approximating the RBM Log-Likelihood Gradient

All common training algorithms for RBMs approximate the log-likelihood gra-
dient given some data and perform gradient ascent on these approximations.
Selected learning algorithms will be described in the following section, starting
with contrastive divergence learning.

5.1 Contrastive Divergence

Obtaining unbiased estimates of log-likelihood gradient using MCMC methods
typically requires many sampling steps. However, recently it was shown that
estimates obtained after running the chain for just a few steps can be sufficient
for model training [15]. This leads to contrastive divergence (CD) learning, which
has become a standard way to train RBMs [15,4,18,3,17].

The idea of k-step contrastive divergence learning (CD-k) is quite simple:
Instead of approximating the second term in the log-likelihood gradient by a
sample from the RBM-distribution (which would require to run a Markov chain
until the stationary distribution is reached), a Gibbs chain is run for only k steps
(and usually k = 1). The Gibbs chain is initialized with a training example v(0)

of the training set and yields the sample v(k) after k steps. Each step t consists
of sampling h(t) from p(h|v(t)) and sampling v(t+1) from p(v|h(t)) subsequently.
The gradient (equation (9)) w.r.t. θ of the log-likelihood for one training pattern
v(0) is then approximated by

CDk(θ,v
(0)) = −

∑

h

p(h|v(0))
∂E(v(0),h)

∂θ
+
∑

h

p(h|v(k))
∂E(v(k),h)

∂θ
. (34)

The derivatives in direction of the single parameters are obtained by “estimating”
the expectations over p(v) in (29), (32) and (33) by the single sample v(k). A
batch version of CD-k can be seen in algorithm 1.
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Algorithm 1. k-step contrastive divergence

Input: RBM (V1, . . . , Vm,H1, . . . , Hn), training batch S
Output: gradient approximation Δwij , Δbj and Δci for i = 1, . . . , n,

j = 1, . . . ,m
1 init Δwij = Δbj = Δci = 0 for i = 1, . . . , n, j = 1, . . . ,m
2 forall the v ∈ S do

3 v(0) ← v
4 for t = 0, . . . , k − 1 do

5 for i = 1, . . . , n do sample h
(t)
i ∼ p(hi |v(t))

6 for j = 1, . . . , m do sample v
(t+1)
j ∼ p(vj |h(t))

7 for i = 1, . . . , n, j = 1, . . . ,m do

8 Δwij ← Δwij + p(Hi = 1 |v(0))· v(0)j − p(Hi = 1 |v(k))· v(k)j

9 Δbj ← Δbj + v
(0)
j − v

(k)
j

10 Δci ← Δci + p(Hi = 1 | v(0))− p(Hi = 1 |v(k))

Since v(k) is not a sample from the stationary model distribution the approx-
imation (34) is biased. Obviously, the bias vanishes as k → ∞. That CD is a bi-
ased approximation becomes also clear by realizing that it does not maximize the
likelihood of the data under the model but the difference of two KL-divergences
[15]:

KL(q|p)−KL(pk|p) , (35)

where q is the empirical distribution and pk is the distribution of the visible
variables after k steps of the Markov chain. If the chain already reached station-
arity it holds pk = p and thus KL(pk|p) = 0 and the approximation error of CD
vanishes.

The theoretical results from [3] give a good understanding of the CD approx-
imation and the corresponding bias by showing that the log-likelihood gradient
can – based on a Markov chain – be expressed as a sum of terms containing the
k-th sample:

Theorem 1 (Bengio and Delalleau [3]). For a converging Gibbs chain

v(0) ⇒ h(0) ⇒ v(1) ⇒ h(1) . . .

starting at data point v(0), the log-likelihood gradient can be written as

∂

∂θ
lnp(v(0)) = −

∑

h

p(h|v(0))
∂E(v(0),h)

∂θ

+ Ep(v(k)|v(0))

[
∑

h

p(h|v(k))
∂E(v(k),h)

∂θ

]
+ Ep(v(k)|v(0))

[
∂lnp(v(k))

∂θ

]
(36)

and the final term converges to zero as k goes to infinity.

The first two terms in equation (36) just correspond to the expectation of the
CD approximation (under pk) and the bias is given by the final term.
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The approximation error does not only depend on the value of k but also on the
rate of convergence or the mixing rate of the Gibbs chain. The rate describes how
fast the Markov chain approaches the stationary distribution. The mixing rate
of the Gibbs chain of an RBM is up to the magnitude of the model parameters
[15,7,3,12]. This becomes clear by considering that the conditional probabilities

p(vj |h) and p(hi|v) are given by thresholding
n∑
i=1

wijhi + bj and
m∑
j=1

wijvj + ci,

respectively. If the absolute values of the parameters are high, the conditional
probabilities can get close to one or zero. If this happens, the states get more and
more “predictable” and the Markov chain changes its state slowly. An empirical
analysis of the dependency between the size of the bias and magnitude of the
parameters can be found in [3].

An upper bound on the expectation of the CD approximation error under the
empirical distribution is given by the following theorem [12]:

Theorem 2 (Fischer and Igel [12]). Let p denote the marginal distribution
of the visible units of an RBM and let q be the empirical distribution defined
by a set of samples v1, . . . ,v�. Then an upper bound on the expectation of the
error of the CD-k approximation of the log-likelihood derivative w.r.t some RBM
parameter θa is given by

∣∣∣∣Eq(v(0))

[
Ep(v(k)|v(0))

[
∂lnp(v(k))

∂θa

]]∣∣∣∣ ≤
1

2
‖q − p‖

(
1− e−(m+n)Δ

)k
(37)

with

Δ = max

{
max

l∈{1,...,m}
ϑl, max

l∈{1,...,n}
ξl

}
,

where

ϑl = max

{∣∣∣∣∣

n∑

i=1

I{wil>0}wil + bl

∣∣∣∣∣ ,

∣∣∣∣∣

n∑

i=1

I{wil<0}wil + bl

∣∣∣∣∣

}

and
ξl = max

{∣∣∣∣∣∣

m∑

j=1

I{wlj>0}wlj + cl

∣∣∣∣∣∣
,

∣∣∣∣∣∣

m∑

j=1

I{wlj<0}wlj + cl

∣∣∣∣∣∣

}
.

The bound (and probably also the bias) depends on the absolute values of the
RBM parameters, on the size of the RBM (the number of variables in the graph),
and on the distance in variation between the modeled distribution and the start-
ing distribution of the Gibbs chain.

As a consequence of the approximation error CD-learning does not neces-
sarily lead to a maximum likelihood estimate of the model parameters. Yuille
[42] specifies conditions under which CD learning is guaranteed to converge to
the maximum likelihood solution, which need not hold for RBM training in
general. Examples of energy functions and Markov chains for which CD-1 learn-
ing does not converge are given in [27]. The empirical comparisons of the CD-
approximation and the true gradient for RBMs small enough that the gradient
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is still tractable conducted in [7] and [3] shows that the bias can lead to a con-
vergence to parameters that do not reach the maximum likelihood.

The bias, however, can also lead to a distortion of the learning process: After
some learning iterations the likelihood can start to diverge (see figure 2) in the
sense that the model systematically gets worse if k is not large [11]. This is espe-
cially bad because the log-likelihood is not tractable in reasonable sized RBMs,
and so the misbehavior can not be displayed and used as a stopping criterion.
Because the effect depends on the magnitude of the weights, weight decay can
help to prevent it. However, the weight decay parameter λ, see equation (6), is
difficult to tune. If it is too small, weight decay has no effect. If it is too large,
the learning converges to models with low likelihood [11].
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Fig. 2. Evolution of the log-likelihood during batch training of an RBM. In the left
plot, CD-k with different values for k (from bottom to top k = 1, 2, 5, 10, 20, 100) was
used. In the right plot, we employed parallel tempering (PT, see section 5.3) with
different numbers M of temperatures (from bottom to top M = 4, 5, 10, 50). In PT the
inverse temperatures were equally distributed in the interval [0, 1], which may not be
the optimal [9]. The training set was given by a 4× 4 variant of the Bars-and-Stripes
benchmark problem [28]. The learning rate was η = 0.1 for CD and η = 0.05 for PT
and neither weight decay nor a momentum term were used (λ = ν = 0). Shown are
medians over 25 runs.

More recently proposed learning algorithms try to yield better approximations
of the log-likelihood gradient by sampling from Markov chains with increased
mixing rate.

5.2 Persistent Contrastive Divergence

The idea of persistent contrastive divergence (PCD, [36]) is described in [41]
for log-likelihood maximization of general MRFs and is applied to RBMs in
[36]. The PCD approximation is obtained from the CD approximation (34) by
replacing the sample v(k) by a sample from a Gibbs chain that is independent
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from the sample v(0) of the training distribution. The algorithm corresponds to
standard CD learning without reinitializing the visible units of the Markov chain
with a training sample each time we want to draw a sample v(k) approximately
from the RBM distribution. Instead one keeps “persistent” chains which are
run for k Gibbs steps after each parameter update (i.e., the initial state of
the current Gibbs chain is equal to v(k) from the previous update step). The
fundamental idea underlying PCD is that one could assume that the chains stay
close to the stationary distribution if the learning rate is sufficiently small and
thus the model changes only slightly between parameter updates [41,36]. The
number of persistent chains used for sampling (or the number of samples used
to approximate the second term of gradient (9)) is a hyper parameter of the
algorithm. In the canonical from, there exists one Markov chain per training
example in a batch.

The PCD algorithm was further refined in a variant called fast persistent
contrastive divergence (FPCD, [37]). Fast PCD tries to reach faster mixing of the

Gibbs chain by introducing additional parameters wfij , b
f
j , c

f
i (for i = 1, . . . , n and

j = 1, . . . ,m) referred to as fast parameters. These new set of parameters is only
used for sampling and not in the model itself. When calculating the conditional
distributions for Gibbs sampling, the regular parameters are replaced by the
sum of the regular and the fast parameters, i.e., Gibbs sampling is based on the

probabilities p̃(Hi = 1 |v) = σ

(
m∑
j=1

(wij+w
f
ij)vj+(ci+c

f
i )

)
and p̃(Vj = 1 |h) =

σ

(
n∑
i=1

(wij +w
f
ij)hi+(bj + b

f
j )

)
instead of the conditional probabilities given by

(23) and (24). The learning update rule for the fast parameters equals the one
for the regular parameters, but with an independent, large learning rate leading
to faster changes as well as a large weight decay parameter. Weight decay can
also be used for the regular parameters, but it was suggested that regularizing
just the fast weights is sufficient [37].

Neither PCD nor FPCD seem to enlarge the mixing rate (or decrease the bias
of the approximation) sufficiently to avoid the divergence problem as can be seen
in the empirical analysis in [11].

5.3 Parallel Tempering

One of the most promising sampling technique used for RBM-training so far is
parallel tempering (PT, [33,10,8]). It introduces supplementary Gibbs chains that
sample form more and more smoothed replicas of the original distribution. This
can be formalized in the following way: Given an ordered set ofM temperatures
T1, T2, . . . , TM with 1 = T1 < T2 < · · · < TM , we define a set of M Markov
chains with stationary distributions

pr(v,h) =
1

Zr
e−

1
Tr
E(v,h) (38)

for r = 1, . . . ,M , where Zr =
∑

v,h e
− 1

Tr
E(v,h) is the corresponding partition

function, and p1 is exactly the model distribution.
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Algorithm 2. k-step parallel tempering with M temperatures

Input: RBM (V1, . . . , Vm,H1, . . . , Hn), training batch S, current state vr of
Markov chain with stationary distribution pr for r = 1, . . . ,M

Output: gradient approximation Δwij , Δbj and Δci for i = 1, . . . , n,
j = 1, . . . ,m

1 init Δwij = Δbj = Δci = 0 for i = 1, . . . , n, j = 1, . . . ,m
2 forall the v ∈ S do
3 for r = 1, . . . ,M do

4 v
(0)
r ← vr

5 for i = 1, . . . , n do sample h
(0)
r,i ∼ p(hr,i |v(0)

r )

6 for t = 0, . . . , k − 1 do

7 for j = 1, . . . ,m do sample v
(t+1)
r,j ∼ p(vr,j |h(t)

r )

8 for i = 1, . . . , n do sample h
(t+1)
r,i ∼ p(hr,i | v(t+1)

r )

9 vr ← v
(k)
r

/* swapping order below works well in practice [26] */

10 for r ∈ {s | 2 ≤ s ≤M and s mod 2 = 0} do
11 swap (v

(k)
r ,h

(k)
r ) and (v

(k)
r−1,h

(k)
r−1) with probability given by (40)

12 for r ∈ {s | 3 ≤ s ≤M and s mod 2 = 1} do
13 swap (vk

r ,h
k
r ) and (vk

r−1,h
k
r−1) with probability given by (40)

14 for i = 1, . . . , n, j = 1, . . . ,m do

15 Δwij ← Δwij + p(Hi = 1 |v)· vj − p(Hi = 1 |v(k)
1 )· v(k)1,j

16 Δbj ← Δbj + vj − v
(k)
1,j

17 Δci ← Δci + p(Hi = 1 | v)− p(Hi = 1 |v(k)
1 )

In each step of the algorithm, we run k (usually k = 1) Gibbs sampling steps
in each tempered Markov chain yielding samples (v1,h1), . . . , (vM ,hM ). After
this, two neighboring Gibbs chains with temperatures Tr and Tr−1 may exchange
particles (vr,hr) and (vr−1,hr−1) with an exchange probability based on the
Metropolis ratio,

min

{
1,
pr
(
vr−1,hr−1

)
pr−1

(
vr,hr

)

pr
(
vr,hr

)
pr−1

(
vr−1,hr−1

)
}
, (39)

which gives for RBMs

min

{
1, exp

((
1

Tr
− 1

Tr−1

)
∗ (E(vr,hr)− E(vr−1,hr−1))

)}
. (40)

After performing these swaps between chains, which enlarge the mixing rate, we
take the (eventually exchanged) sample v1 of original chain (with temperature
T1 = 1) as a sample from the model distribution. This procedure is repeated L
times yielding samples v1,1, . . . ,v1,L used for the approximation of the expec-
tation under the RBM distribution in the log-likelihood gradient (i.e., for the
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approximation of the second term in (9)). Usually L is set to the number of
samples in the (mini) batch of training data as shown in algorithm 2.

Compared to CD, PT introduces computational overhead, but results in a
faster mixing Markov chain and thus a less biased gradient approximation. The
evolution of the log-likelihood during training using PT with different values of
M can be seen in figure 2.

6 RBMs with Real-Valued Variables

So far, we considered only observations represented by binary vectors, but often
one would like to model distributions over continuous data. There are several
ways to define RBMs with real-valued visible units. As demonstrated by [18],
one can model a continuous distribution with a binary RBM by a simple “trick”.
The input data is scaled to the interval [0, 1] and modeled by the probability
of the visible variables to be one. That is, instead of sampling binary values,
the expectation p(Vj = 1|h) is regarded as the current state of the variable Vj .
Except for the continuous values of the visible variables and the resulting changes
in the sampling procedure the learning process remains the same. By keeping
the energy function as given in (20) and just replacing the state space {0, 1}m of
V by [0, 1]m, the conditional distributions of the visible variables belong to the
class of truncated exponential distributions. This can be shown in the same way
as the sigmoid function for binary RBMs is derived in (27). Visible neurons with
a Gaussian distributed conditional are for example gained by augmenting the
energy with quadratical terms

∑
j djv

2
j weighted by parameters dj , j = 1, . . . ,m.

In contrast to the universal approximation capabilities of standard RBMs on
{0, 1}m, the subset of real-valued distributions that can be modeled by an RBM
with real-valued visible units is rather constrained [38].

More generally, it is possible to cover continuous valued variables by extend-
ing the definition of an RBM to any MRF whose energy function is such that
p(h|v) =

∏
i p(hi|v) and p(v|h) =

∏
j p(vj |h). As follows directly from the

Hammersley-Clifford theorem and as also discussed in [18], this holds for any
energy function of the form

E(v,h) =
∑

i,j

φi,j(hi, vj) +
∑

j

ωj(vj) +
∑

i

νi(hi)) (41)

with real-valued functions φi,j , ωj , and νi ,i = 1, . . . , n and j = 1, . . . ,m, ful-
filling the constraint that the partition function Z is finite. Welling et al. [40]
come to almost the same generalized form of the energy function in their frame-
work for constructing exponential family harmoniums from arbitrary marginal
distributions p(vj) and p(hi) from the exponential family.

7 Loosening the Restrictions

In this closing section, we will give a very brief outlook on selected extensions
of RBMs that loosen the imposed restrictions on the bipartite network topology
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by introducing dependencies on further random variables or by allowing for
arbitrary connections between nodes in the model.

Conditional RBMs. Several generalizations and extensions of RBMs exist. A
notable example are conditional RBMs (e.g., example [35,29]). In these mod-
els, some of the parameters in the RBM energy are replaced by parametrized
functions of some conditioning random variables, see [2] for an introduction.

Boltzmann Machines. Removing the “R” from the RBM brings us back to
where everything started, to the general Boltzmann machine [1]. These are MRFs
consisting of a set of hidden and visible variables where the energy is given by

E(v,h) =

−
n∑

i=1

m∑

j=1

hiwijvj −
m∑

k=1

∑

l<k

vkuklvl −
n∑

k=1

∑

l<k

hkyklhl −
m∑

j=1

bjvj −
n∑

i=1

cihi .

(42)

The graph corresponds to the one of an RBM with additional connections be-
tween the variables of one layer. These dependencies make sampling more com-
plex (in Gibbs sampling each variable has to be updated independently) and thus
training more difficult. However, specialized learning algorithms for particular
“deep” graph structures have been developed [32].

8 Next Steps

The goal of this tutorial was to introduce RBMs from the probabilistic graphical
model perspective. The text is meant to supplement existing tutorials, and it
is biased in the sense that it focuses on material that we found helpful in our
work. We hope that the reader is now equipped to move on to advanced models
building on RBMs – in particular to deep learning architectures, where [2] may
serve as an excellent starting point.

All experiments in this tutorial can be reproduced using the open source
machine learning library Shark [20], which implements most of the models and
algorithms that were discussed.

Acknowledgments. The authors acknowledge support from the German Fed-
eral Ministry of Education and Research within the National Network Computa-
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