Ecuaciones Diferenciales $A/B - 1^{\circ}$ cuatrimestre 2020

Ecuación del calor

Ejercicio 1. Sea u una solución de $u_t - \Delta u = 0$ en $\mathbb{R}^n \times (0, +\infty)$.

- 1. Probar que $u_{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ también resuelve la ecuación del calor para cada $\lambda \in \mathbb{R}$.
- 2. Mostrar que, si u es suficientemente regular, $v(x,t) := x \cdot \nabla u(x,t) + 2tu_t(x,t)$ también resuelve la ecuación del calor.

Ejercicio 2. Diremos que una función u es calórica en U si verifica la ecuación del calor $u_t - \Delta u = 0$ en U. Verificar las siguientes afirmaciones indicando en cada caso las hipótesis de regularidad sobre u necesarias para su validez.

- 1. Combinaciones lineales. Si u_1 y u_2 son funciones calóricas entonces $\alpha u_1 + \beta u_2$ también lo es.
- 2. Traslaciones. Si u(x,t) es calórica entonces $u(x-\xi,t-\tau)$ también lo es, $\xi \in \mathbb{R}^n$, $\tau > 0$.
- 3. Diferenciación respecto a parámetros. Si $u(x,t,\lambda)$ es calórica para cada $\lambda \in \mathbb{R}$, entonces $\partial_{\lambda}u(x,t,\lambda)$ también lo es.
- 4. Integración respecto a parámetros. Si $u(x,t,\lambda)$ es calórica para cada $\lambda \in \mathbb{R}$, entonces $\int_a^b u(x,t,\lambda) d\lambda$ es calórica.
- 5. Diferenciación respecto a x y t. Si u(x,t) es calórica entonces $D_x^{\alpha} \partial_t^k u$ es calórica todo multi-índice $\alpha \in \mathbb{N}_0^n$ y todo $k \in \mathbb{N}_0$.
- 6. Integración respecto a x y t. Considerar n=1. Si u(x,t) es calórica, entonces $\int_{x_0}^x u(y,t) \, dy$ es calórica si $\partial_x u(x_0,t) = 0$ y $\int_a^t u(x,s) \, ds$ es calórica si u(x,a) = 0.
- 7. Convoluciones. Si u(x,t) es calórica, entonces $\int_{\mathbb{R}^n} u(x-y,t)\varphi(y) dy$ y $\int_a^b u(x,t-s)\varphi(s) ds$ son calóricas.

Ejercicio 3.

1. Verificar que si ϕ es una solución de la ecuación del calor en $\mathbb{R}^3 \times (0, \infty)$ y existe $w : \mathbb{R} \times (0, \infty) \to \mathbb{R}$ tal que $\phi(x, t) = w(|x|, t)$ para todo $x \in \mathbb{R}^3$ y todo t > 0 (i.e., ϕ tiene simetría esférica), entonces w satisface:

(1)
$$w_{rr} + \frac{2}{r}w_r = w_t \qquad r > 0, \ t > 0.$$

2. Mostrar que la ecuación (1) puede reducirse a la ecuación del calor unidimensional mediante el cambio $\psi=rw$.

Ejercicio 4. Para i = 1, ..., n, sea u_i una solución de

$$\partial_t u_i(x,t) = \partial_{xx} u_i(x,t) \quad x \in \mathbb{R}, \ t > 0, \qquad u_i(x,0) = \varphi_i(x) \quad x > 0.$$

Probar que la función

$$u(x,t) := u_1(x_1,t) \cdots u_n(x_n,t)$$
 para $x \in \mathbb{R}^n, t \ge 0$,

es solución de la ecuación del calor en $\mathbb{R}^n \times (0, \infty)$ y satisface $u(x, 0) = \varphi(x)$ para todo $x \in \mathbb{R}^n$, donde $\varphi(x) := \varphi_1(x_1) \cdots \varphi_n(x_n)$.

Ejercicio 5. Sea $u(x,t) := v(x^2/t)$ para $x \in \mathbb{R}$ y t > 0.

1. Verificar que $u_t = \partial_{xx} u$ en $\mathbb{R} \times (0, \infty)$ si y sólo si

(2)
$$4zv''(z) + (2+z)v'(z) = 0 z \in \mathbb{R}.$$

2. Verificar que la solución general de (2) es

$$v(z) = C_1 \int_0^z e^{-s/4} s^{-1/2} ds + C_2$$
 para $z \in \mathbb{R}$ $(C_1, C_2 \in \mathbb{R}).$

3. Derivar $v(x^2/t)$ respecto a x y seleccionar C_1 adecuadamente para obtener la solución fundamental Φ .

Ejercicio 6. Sea

$$u(x,t) := \frac{1}{t^{\alpha}} v\left(\frac{x}{t^{\beta}}\right)$$
 para $x \in \mathbb{R}^n, \ t > 0$,

donde α y β son constantes.

1. Verificar que u satisface la ecuación del calor si y sólo si v satisface

$$\alpha t^{-(\alpha+1)}v(y) + \beta t^{-(\alpha+1)}y \cdot Dv(y) + t^{-(\alpha+2\beta)}\Delta v(y) = 0,$$

para $y = t^{-\beta}x$.

2. Verificar que si $\beta = 1/2$, v satisface

$$\alpha v + \frac{1}{2}y \cdot Dv + \Delta v = 0.$$

3. Verificar que si v es radial, i.e. v(y) = w(|y|) para $w : \mathbb{R} \to \mathbb{R}$, entonces w satisface

$$\alpha w + \frac{1}{2}rw' + w'' + \frac{n-1}{r}w' = 0,$$

donde $r=|y|,\ '=\frac{d}{dr}.$ 4. Tomar $\alpha=n/2$ y hallar la solución fundamental de la ecuación del calor.

Ejercicio 7 (Método de similaridad).

1. Hallar todas las soluciones de la ecuación del calor unidimensional que satisfacen

$$u(x,t) = u(\lambda x, \lambda^2 t)$$
 para todo $x \in \mathbb{R}, t > 0$ y todo $\lambda \in \mathbb{R}$.

2. Mostrar que el método de similaridad dado en el item anterior también puede aplicarse a la ecuación del calor no lineal

$$\partial_x (K(u)\partial_x u) = \partial_t u,$$

donde K es una función en $C^1(\mathbb{R})$.

Ejercicio 8.

- 1. Sea a(t) > 0 una función continua y sea u(x,t) una solución regular de $u_t = a\Delta u$. Mostrar que existe un cambio de variables $t = \phi(\tau)$ tal que $U(x,\tau) := u(x,\phi(\tau))$ es solución de la ecuación del calor.
- 2. Sea $b(t) \in \mathbb{R}^n$ continua y sea u(x,t) una solución regular de $u_t = \Delta u + b \cdot \nabla u$. Mostrar que existe un cambio de variables $x = \psi(y,t)$ tal que $U(y,t) := u(\psi(y,t),t)$ es solución de la ecuación del calor.
- 3. Sea $c(t) \in \mathbb{R}$ continua y sea u(x,t) una solución regular de $u_t + cu = \Delta u$. Mostrar que existe $\varphi(t)$ derivable, tal que $U(x,t) := u(x,t)\varphi(t)$ es solución de la ecuación del calor.
- 4. Escribir una fórmula explícita para una solución de

$$\begin{cases} au_t + cu = \Delta u + b \cdot \nabla u + f & \text{en } \mathbb{R}^n \times (0, +\infty) \\ u = g & \text{en } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

donde $c(t) \in \mathbb{R}$, a(t) > 0 y $b(t) \in \mathbb{R}^n$ son continuas.

Ejercicio 9 (Principio de Duhamel). Sea u la solución del siguiente problema:

$$\begin{cases} u_t(x,t) - \partial_{xx} u(x,t) = g(x,t) & 0 < x < L, \ t > 0, \\ u(0,t) = u(L,t) = 0 & t > 0, \\ u(x,0) = 0 & 0 < x < L. \end{cases}$$

Probar que u puede ser representada en la forma

$$u(x,t) = \int_0^t \varphi(x,t;s) \, ds$$
 $0 < x < L, t > 0,$

donde Φ es la solución del problema

$$\begin{cases} \varphi_t(x,t) - \varphi_{xx}(x,t) = 0 & 0 < x < L, t > s, \\ \varphi(0,t;s) = \varphi(L,t;s) = 0 & t > s, \\ \varphi(x,s;s) = g(x,s) & 0 < x < L. \end{cases}$$

Ejercicio 10. Usar la transformada de Fourier para resolver el problema

$$u_t(x,t) - \partial_{xx} u(x,t) = g(x,t) \quad x \in \mathbb{R}, \ t > 0, \qquad u(x,0) = f(x) \quad x \in \mathbb{R},$$

donde f y $g(\cdot,t)$ para cada t fijo, son funciones de S.

Ejercicio 11. Deducir la fórmula explícita

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} h(s) ds \qquad x > 0, \ t > 0,$$

para la solución del problema

$$\begin{cases} u_t(x,t) - \partial_{xx} u(x,t) = 0 & x > 0, \ t > 0, \\ u(x,0) = 0 & x > 0, \\ u(0,t) = h(t) & t > 0, \end{cases}$$

donde h(0) = 0.

Sugerencia: Definir v(x,t) := u(x,t) - h(t) y extender a $v(\cdot,t)$ por imparidad.

Ejercicio 12. Mostrar que la solución acotada de

$$\begin{cases} u_t(x,t) - \partial_{xx} u(x,t) = 0 & x > 0, \ t > 0, \\ u_x(0,t) = 0 & t > 0, \\ u(x,0) = f(x) & x > 0, \end{cases}$$

está dada por la fórmula

$$u(x,t) = \int_0^\infty N(x,\xi,t)f(\xi)d\xi \qquad x > 0, \ t > 0,$$

donde $N(x,\xi,t):=\Phi(x-\xi,t)+\Phi(x+\xi,t)$ y Φ es la solución fundamental de la ecuación del calor.

Sugerencia: Extender f por paridad a $-\infty < x < 0$ y resolver el problema de valores iniciales para la f

Ejercicio 13. Sea u la solución del problema

$$\begin{cases} u_t(x,t) = \partial_{xx} u(x,t) & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = \varphi(x) & x \in \mathbb{R} \end{cases}$$

dada por la convolución (en la variable x) de φ con la solución fundamental. Probar que si $\varphi \in L^1(\mathbb{R})$, entonces para todo t > 0 se tiene que $u(\cdot, t) \in L^1(\mathbb{R})$ y

$$\int_{\mathbb{R}} u(x,t)dx = \int_{\mathbb{R}} \varphi(x)dx.$$

Ejercicio 14. Decimos que $v \in C^{2,1}(U_T) \cap C(\overline{U_T})$ es una *subsolución* de la ecuación del calor si

$$v_t - \Delta v \le 0$$
 en U_T .

- 1. Probar que $\max_{U_T} v = \max_{\Gamma_T} v$.
- 2. Sea $\phi : \mathbb{R} \to \mathbb{R}$ un función suave y convexa. Probar que si u es solución de la ecuación del calor y $v := \phi \circ u$, entonces v es una subsolución de la ecuación del calor.
- 3. Probar que $v := |\nabla u|^2 + u_t^2$ es una subsolución si u es una solución de la ecuación del calor.

Ejercicio 15.

1. Sea $C(x,t;r) := B_r(x) \times (t-r^2,t]$ para $x \in \mathbb{R}^n$, t > 0 y r > 0. Probar que si u es solución de la ecuación del calor en C(0,0;2) entonces existe una constante C universal tal que

$$\max_{C(0,0;1)} |\nabla_x u| \le C \max_{C(0,0;2)} |u|.$$

2. Con la notación del ejercicio anterior, probar que si $K \subset \overline{U_T} \setminus \partial_p U_T$ es compacto, entonces existe una constante C que depende de $dist(K, \partial_p U_T)$ tal que

$$\max_{K} |\nabla_x u| \le C \max_{U_T} |u|.$$

Ejercicio 16. Para $n \in \mathbb{N}$, sea u_n una solución regular del siguiente problema:

$$(u_n)_t - \Delta u_n = 0$$
 en U_T , $u_n = f_n$ en $\partial_p U_T$.

Probar que si $f_n \to f$ uniformemente en $\partial_p U_T$, entonces existe u regular tal que $u_n \to u$ uniformemente sobre U_T y u es solución de

$$u_t - \Delta u = 0$$
 en U_T , $u = f$ en $\partial_n U_T$.

Ejercicio 17. Sea u una solución acotada de la ecuación del calor en \mathbb{R}^{n+1} . Probar que u es constante. ¿Es cierto el resultado si eliminamos la hipótesis que u sea acotada?

Ejercicio 18. Sea u una solución de la ecuación del calor en \mathbb{R}^{n+1} tal que u=0 si $x_1=0$, uniformemente Lipschitz. Probar que existe $\alpha \in \mathbb{R}$ tal que $u(x,t)=\alpha x_1$.

Ejercicio 19 (Principio del máximo para problemas parabólicos). Definimos

$$\mathcal{L}u := -\sum_{i,j=1}^{n} a_{ij}(x,t)\partial_{ij}u + \sum_{i=1}^{n} b_{i}(x,t)\partial_{i}u,$$

donde los coeficientes a_{ij} , b_i son continuos, $a_{ij} = a_{ji}$ y la matriz $A = (a_{ij})$ es definida positiva. Es decir, \mathcal{L} es un operador elíptico según la definición del Ejercicio 13 de la práctica 2.

Probar que si $u \in C^{2,1}(U_T) \cap C(\overline{U}_T)$ satisface

$$u_t + \mathcal{L}u = 0$$
 en U_T ,

entonces

$$\max_{\overline{U}_T} u = \max_{\Gamma_T} u.$$

Al operador $\partial_t + \mathcal{L}$ se lo denomina operador parabólico.

Ejercicio 20. Sea $u \in C^{2,1}(U_T) \cap C(\overline{U_T})$ solución de

$$u_t - \Delta u = f$$
 en U_T , $u = 0$ en $\partial_p U_T$,

donde f = f(x). Probar que si $f \leq 0$, entonces $u_t \leq 0$.

Sugerencia: Definir $w(x,t) = u(x,t+\varepsilon) - u(x,t)$, calcular $w_t - \Delta w$ y aplicar el principio del máximo. Ver el ejercicio 14.

Ejercicio 21. Consideremos el paseo aleatorio simétrico. Supongamos que en el punto $L = \bar{m}h + h/2 > 0$ se ubica una barrera perfectamente refractante: si una partícula llega al punto L - h/2 a tiempo t y se mueve hacia la derecha, entonces es reflejada y regresa al punto L - h/2 en el tiempo $t + \tau$.

Mostrar que cuando $h, \tau \to 0$ y $h^2/\tau = 2D, p = p(x,t)$ es una solución del problema

$$\begin{cases} p_t(x,t) - Dp_{xx}(x,t) = 0 & x < L, \ t > 0, \\ p(x,0) = \delta & x < L, \\ p_x(L,t) = 0 & t > 0, \end{cases}$$

Además, $\int_{-\infty}^{L} p(x,t) dx = 1$. Calcular explícitamente la solución.

Ejercicio 22. Consideremos el paseo aleatorio simétrico. Supongamos que en el punto $L = \bar{m}h > 0$ se ubica una barrera perfectamente absorbente: si una partícula llega al punto L - h a tiempo t y se mueve a la derecha, es absorbida y se detiene en L. Mostrar que cuando $h, \tau \to 0$ y $h^2/\tau = 2D$, p = p(x,t) es una solución del problema

$$\begin{cases} p_t(x,t) - Dp_{xx}(x,t) = 0 & x < L, \ t > 0, \\ p(x,0) = \delta & x < L, \\ p(L,t) = 0 & t > 0. \end{cases}$$

Calcular explícitamente la solución.