Ecuaciones Diferenciales $A/B - 1^{\circ}$ cuatrimestre 2020

Transformada de Fourier

Ejercicio 1. Sean $f \in L^1(\mathbb{R}^n)$, $\alpha \in \mathbb{R}^n$ y $\lambda \in \mathbb{R} - \{0\}$. Probar las siguientes afirmaciones:

- 1. Si $g(x) = f(x)e^{2\pi i\alpha \cdot x}$ entonces $\hat{g}(y) = \hat{f}(y \alpha)$.
- 2. Si $g(x) = f(x \alpha)$ entonces $\hat{g}(y) = \hat{f}(y)e^{-2\pi i\alpha \cdot y}$.
- 3. Si $g(x) = f(\frac{x}{\lambda})$ entonces $\hat{g}(y) = \lambda^n \hat{f}(\lambda y)$.
- 4. Si $g(x) = -2\pi i x_k f(x)$ y $g \in L^1$ entonces \hat{f} es derivable respecto a y_k y $\partial_{y_k} \hat{f} = \hat{g}$.

Ejercicio 2. Verificar que si $f \in L^1(\mathbb{R}^n)$ entonces $\hat{f} \in L^{\infty}(\mathbb{R}^n)$ con $\|\hat{f}\|_{L^{\infty}(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)}$, y $\lim_{|y| \to \infty} \hat{f}(y) = 0$ (lema de Riemann-Lebesgue).

Ejercicio 3. Probar que si $f \in \mathcal{S}$, entonces $\hat{f}(x) = f(-x)$. Extender esta formula a $f \in L^2(\mathbb{R}^n)$ y concluir que si $f \in L^2(\mathbb{R}^n)$ es tal que $\hat{f} = \lambda f$ para algún $\lambda \in \mathbb{C} - \{0\}$ entonces λ es una raíz cuarta de la unidad.

Ejercicio 4. Probar que la transformada de Fourier de una función $f: \mathbb{R} \to \mathbb{R}$ es real si y sólo si f es par.

Ejercicio 5. Hallar las transformadas de Fourier de las siguientes funciones:

$$f_1(x) := e^{-a|x|}$$
 $(a > 0),$ $f_2(x) := \exp(-ax^2)$ $(a > 0),$

$$f_3(x) := \chi_{[a,b]}(x)$$
 $(a, b \in \mathbb{R}),$ $f_4(x) := \frac{1}{a^2 + x^2}$ $(a \in \mathbb{R}).$

En todos los casos, el dominio de la función es R.

Ejercicio 6. Para $f \in L^1(0,\infty)$, se define la transformada-coseno de Fourier como

$$\mathcal{F}_c f(y) := \int_0^\infty f(x) \cos(2\pi xy) dx \quad \text{para} \quad y \in \mathbb{R},$$

y la transformada-seno de Fourier como

$$\mathcal{F}_s f(y) = \int_0^\infty f(x) \sin(2\pi xy) dx$$
 para $y \in \mathbb{R}$.

Verificar las siguientes afirmaciones:

- 1. Si se extiende a f a \mathbb{R} como una función par, entonces $\mathcal{F}_c f(y) = \frac{1}{2} \hat{f}(y)$.
- 2. Si se extiende a f a \mathbb{R} como una función impar, entonces $\mathcal{F}_s f(y) = \frac{1}{2i} \hat{f}(y)$.

Ejercicio 7.

- 1. Sean $f \in L^1(\mathbb{R}^n)$ y $A \in \mathbb{R}^{n \times n}$ una matriz no singular. ¿Cómo se relacionan la transformada de Fourier de f(Ax) con la de f(x)?
- 2. Probar que la transformada de Fourier tranforma funciones radiales en funciones radiales.

Ejercicio 8. Probar que si $f \in L^1(\mathbb{R}^n)$ tiene soporte compacto entonces $\hat{f} \in C^{\infty}(\mathbb{R}^n)$.

Ejercicio 9. Probar que si $f \in L^1(\mathbb{R}^n)$ es tal que $\hat{f} = 0$ entonces f = 0.

Ejercicio 10. Probar que $f \in \mathcal{S}$ es tal que f * f = f si y sólo si f = 0 en casi todo punto. ¿Qué sucede si $f \in L^2(\mathbb{R}^n)$?

Ejercicio 11.

1. Probar que si ϕ , ϕ' y ϕ'' pertenecen al conjunto

$$L^1(\mathbb{R}) \cap \left\{ g \in C(\mathbb{R}) \colon \lim_{|x| \to \infty} g(x) = 0 \right\},$$

entonces existe $f \in L^1(\mathbb{R})$ tal que $\hat{f} = \phi$.

- 2. Sea $K \subset \mathbb{R}$ compacto y sea $U \subset \mathbb{R}$ abierto tal que $K \subset U$. Probar que existe $f \in L^1(\mathbb{R})$ tal que $\hat{f}(y) = 1$ para todo $y \in K$ y $\hat{f}(y) = 0$ para todo $y \in \mathbb{R} U$.
- 3. Probar que $\mathcal{F}(L^1(\mathbb{R}))$ es denso en el conjunto de funciones continuas que tienden a cero en el infinito.

Sugerencia: Usar el teorema de Stone-Weierstrass.

Ejercicio 12. Utilizar la transformada de Fourier para obtener una solución explícita del siguiente problema:

$$\Delta u = 0$$
 en $\mathbb{R}^2_+ := \{(x, y) \in \mathbb{R}^2 : y > 0\}, \quad u(x, 0) = f(x)$ en \mathbb{R} ,

donde $f \in L^2(\mathbb{R})$.

Sugerencia: Transformar Fourier en x y pensar en las funciones f_1 y f_4 del Ejercicio 5.

Ejercicio 13. Utilizar la transformada de Fourier para obtener una solución explícita de la siguiente ecuación:

$$-\Delta u + u = f \quad \text{en} \quad \mathbb{R}^n,$$

donde $f \in \mathcal{S}$.

Sugerencia: Al momento de antitransformar, (i) usar que $\frac{1}{a} = \int_0^{+\infty} e^{-at} dt$, a > 0, (ii) hacer aparecer la función $\int_0^{+\infty} e^{-t} K_t(x) dx$ donde $K_t(x)$ es el nucleo del calor.

Ejercicio 14. Utilizar la transformada de Fourier para obtener una solución explícita del siguiente problema para la ecuación de Schrödinger:

$$iu_t + \Delta u = 0$$
 en $\mathbb{R}^n \times (0, +\infty)$, $u = g$ en $\mathbb{R}^n \times \{t = 0\}$,

donde u y g son funciones a valores complejos y $g \in \mathcal{S}$. Considerar la condición inicial en el sentido de L^2 .

Ejercicio 15. Obtener una expresión integral para la solución del siguiente problema para la ecuación de ondas unidimensional:

$$\begin{cases} u_{tt} = u_{xx} & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = f(x) & x \in \mathbb{R}, \\ u_t(x,0) = g(x) & x \in \mathbb{R}, \end{cases}$$

donde $f, g \in \mathcal{S}$.