Definición.

- $L^1_{loc}(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{C} : f \in L^1(K) \text{ para todo } K \subseteq \mathbb{R}^n \text{ compacto} \}.$
- Dada $f \in L^1_{loc}(\mathbb{R}^n)$ se definen las funciones maximales de Hardy-Littlewood como

i.
$$M^{Q}f(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| : Q \text{ es un cubo que contiene a } x \right\}.$$

ii.
$$M^{QC}f(x) = \sup \left\{ \frac{1}{|Q|} \int_{Q} |f| : Q \text{ es un cubo centrado en } x \right\}.$$

iii.
$$M^B f(x) = \sup \left\{ \frac{1}{|B|} \int_B |f| : B \text{ es una bola que contiene a } x \right\}.$$

iv.
$$M^{BC}f(x) = \sup \left\{ \frac{1}{|B|} \int_{B} |f| : B \text{ es una bola que centrada en } x \right\}.$$

Ejercicio 1. Probar que todas las funciones maximales de Hardy-Littlewood definidas arriba son equivalentes, i.e: para cualquier par de maximales consideradas $M_f^{(i)}$ y $M_f^{(j)}$ existen constantes $C_1, C_2 > 0$ que dependen únicamente de la dimensión n tales que para toda $f \in L^1_{loc}(\mathbb{R}^n)$ se verifica

$$C_1 M^{(i)} f \le M^{(j)} f \le C_2 M_f^{(i)}$$
.

En lo sucesivo, cuando escribamos Mf suprimiendo el supraíndice en la notación nos estaremos refiriendo a cualquiera de las cuatro posibilidades.

Ejercicio 2.

- (a) Mostrar que si $f \in L^p(\mathbb{R}^n)$ con $1 \leq p \leq \infty$ entonces $f \in L^1_{loc}(\mathbb{R}^n)$.
- (b) Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ entonces Mf es semicontinua inferiormente.

Ejercicio 3.

(a) Sea $E \subseteq \mathbb{R}^n$ un conjunto medible de diámetro finito. Probar que existen constantes $C_1, C_2 > 0$ tales que para ||x|| suficientemente grande vale

$$C_1|E|||x||^{-n} \le M\chi_E(x) \le C_2|E|||x||^{-n}.$$

(b) Sea $f \in L^1_{loc}(\mathbb{R}^n)$ no nula. Probar que existe C > 0 tal que si $||x|| \ge 1$ entonces vale

$$Mf(x) \ge C||x||^{-n}$$
.

Deducir que $Mf \notin L^1(\mathbb{R}^n)$ a menos que $f \in L^1_{loc}(\mathbb{R}^n)$ se anule en casi todo punto.

(c) Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por la fórmula $f(x) =: \frac{1}{|x| \log^2(|x|^{-1})} \chi_{[-\frac{1}{2},\frac{1}{2}]}(x)$. Mostrar que f es integrable pero que $Mf \notin L^1_{loc}(\mathbb{R})$. Ejercicio 4. Sea $f \in L^p(\mathbb{R}^n)$ con $1 \le p \le +\infty$.

(a) Probar que si $1 \le p < \infty$ entonces existe una constante C > 0 que no depende de f tal que para todo $\alpha > 0$

$$|\{Mf > \alpha\}| \le \frac{C}{\alpha} \int_{\{|f| \ge \frac{\alpha}{2}\}} |f(x)| dx.$$

Sugerencia. Considerar $g = f\chi_{\{|f| \geq \frac{\alpha}{2}\}}$ y usar que $|f| \leq |g| + \frac{\alpha}{2}$.

(b) Probar que si $1 entonces <math>Mf \in L^p(\mathbb{R}^n)$ y además existe una constante $C_p > 0$ que no depende de f tal que

$$||Mf||_p \le C_p ||f||_p.$$

Ejercicio 5. Dada una familia $S = (S_i)_{i \in I}$ de conjuntos medibles acotados de \mathbb{R}^n y $x \in \mathbb{R}^n$ decimos que S se contrae regularmente a x si verifica

- (i) Para todo $\varepsilon > 0$ existe $S_i \in \mathcal{S}$ con $|S_i| < \varepsilon$.
- (ii) Existe una constante k > 0 tal que para todo $S_i \in \mathcal{S}$ vale que $|Q_i| \le k|S_i|$, donde Q_i denota el cubo más pequeño con centro en x que contiene a S_i .

Notar que los conjuntos S_i no necesitan contener a x.

- (a) Probar que las siguientes familias se contraen regularmente a x:
 - $S^Q = \{Q : Q \text{ cubo que contiene a } x\}$
 - $S^B = \{B : B \text{ bola que contiene a } x\}$
 - $S^{BC} = \{B(x,r) : r > 0\}.$
- (b) Probar que si \mathcal{S} es una familia que se contrae regularmente a x entonces existe una constante C>0 tal que

$$\sup_{S_i \in \mathcal{S}} \frac{1}{|S_i|} \int_{S_i} |f(y)| dy \le CM^{QC} f(x).$$

(c) Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ entonces para todo punto de Lebesgue x de f se tiene

$$\lim_{|S_i| \to 0} \frac{1}{|S_i|} \int_{S_i} |f(y) - f(x)| dy = 0$$

para toda familia S que se contraiga regularmente a x.

Ejercicio 6. Sea $\phi : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ medible y acotada tal que $\operatorname{sop}(\phi) \subseteq B(0,1)$ y $\|\phi\|_1 = 1$. Para cada $\varepsilon > 0$ definamos $\phi_{\varepsilon}(x) := \varepsilon^{-n}\phi(\frac{x}{\varepsilon})$. Probar que para toda $f \in L^1_{loc}(\mathbb{R}^n)$ se tiene

$$\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x)$$

en todo punto de Lebesgue x de f.

Ejercicio 7. Sea $K: \mathbb{R}^n \to \mathbb{R}$ una función medible, acotada y de soporte compacto. Probar que existe una constante C > 0 tal que para toda función $f \in L^1_{loc}(\mathbb{R}^n)$ y para todo $x \in \mathbb{R}^n$ se tiene

$$\sup_{\varepsilon > 0} |f * K_{\varepsilon}(x)| \le CMf(x),$$

donde $K_{\varepsilon}(x) = \varepsilon^{-n} K(\frac{x}{\varepsilon}).$

Ejercicio 8. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por la fórmula

$$f(x) = \begin{cases} 0 & x = 0\\ x \sin(\frac{1}{x}) & x \neq 0. \end{cases}$$

Calcular los cuatro números de Dini f en $x_0 = 0$.

Ejercicio 9. Hallar $f:[0,1]\to\mathbb{R}$ creciente, continua y tal que

$$\int_0^1 f'(x)dx < f(1) - f(0).$$

Ejercicio 10. Sea $g:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ estrictamente creciente y absolutamente continua. Notemos además c:=g(a) y d:=g(b).

- (a) Probar que si $G \subseteq [c, d]$ es abierto entonces $|G| = \int_{g^{-1}(G)} g'(x) dx$.
- (b) Sea $H = \{x : g'(x) \neq 0\}$. Mostrar que si $E \subseteq [c, d]$ y |E| = 0 entonces $g^{-1}(E) \cap H$ tiene medida nula.
- (c) Probar que si $E \subseteq [c,d]$ es medible entonces $F = g^{-1}(E) \cap H$ es medible y además se tiene

$$|E| = \int_F g' = \int_a^b \chi_E(g(x))g'(x)dx.$$

(d) Probar que si f es medible y no negativa sobre [c,d] entonces $(f \circ g)g'$ es medible sobre [a,b] y vale

$$\int_{c}^{d} f(y)dy = \int_{a}^{b} f(g(x))g'(x)dx.$$

Ejercicio 11. Sean $F:[a,b]\to\mathbb{R}$ absolutamente continua y g integrable sobre [a,b]. Probar que

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b G(x)F'(x)dx$$

donde

$$G(x) = G(a) + \int_{a}^{x} g(t)dt.$$

Ejercicio 12. Probar que si f es de variación acotada en [a, b] entonces f se puede escribir como f = g + h donde g es absolutamente continua y h es singular. Mostrar además que g y h son únicas salvo constantes aditivas.

Ejercicio 13. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones monótonas crecientes definidas en un intervalo $[a,b]\subseteq\mathbb{R}$ tales que la serie $\sum_{n=1}^{\infty}f_n(x)$ es convergente para todo $x\in[a,b]$. Probar que si definimos $f:[a,b]\to\mathbb{R}$ por la fórmula

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

entonces para casi todo $x \in [a, b]$ la función f es derivable en x y se tiene la igualdad

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x).$$

Ejercicio 14. Sean $f:[a,b]\to\mathbb{R}$ una función de variación acotada y $V:[a,b]\to\mathbb{R}$ definida por $V(x):=V_a^x(f)$. Nuestro objetivo es mostrar que V'=|f'| en casi todo punto. Para eso se propone el siguiente plan:

- (a) Dada una partición $a = x_0 < \ldots < x_n = b$ mostrar que existe $g: [a, b] \to \mathbb{R}$ tal que
 - g(a) = 0
 - Para cada $0 \le j \le n-1$ vale $g(x_{j+1}) g(x_j) = |f(x_{j+1}) f(x_j)|$
 - Para cada $0 \le j \le n-1$ existe una constante $c_j \in \mathbb{R}$ tal que

$$g|_{[x_j,x_{j+1}]} = f|_{[x_j,x_{j+1}]} + c_j \circ g|_{[x_j,x_{j+1}]} = -f|_{[x_j,x_{j+1}]} + c_j.$$

- (b) Probar que toda función g como en (a) verifica que
 - |q'| = |f'| a.e.
 - $g(b) = \sum_{j=1}^{n-1} |f(x_{j+1}) f(x_j)|$
 - V-g es monótona creciente.
- (c) Elegir una sucesión de funciones g_k como en (a) tales que $\sum_{k\in\mathbb{N}} V(x) g_k(x) < +\infty$ para casi todo x y aplicar el ejercicio anterior.

Ejercicio 15. Sea $f:[a,b]\to\mathbb{R}$ una función de variación acotada. Sea $V:[a,b]\to\mathbb{R}$ definida por $V(x):=V_a^x(f)$. Demostrar las siguientes afirmaciones:

- (a) f es continua si y sólo si V lo es.
- (b) f es absolutamente continua si y sólo si V lo es. Además, en tal caso vale que

$$V(x) = \int_{a}^{x} |f'(y)| dy$$
, para todo $x \in [a, b]$.

(c) $\int_a^b |f'(x)| dx \le V_a^b(f)$ y la igualdad vale si y sólo si f es absolutamente continua.

Ejercicio 16. Sea $f:[a,b]\to\mathbb{R}$ una función absolutamente continua.

- (a) Probar que si $N \subseteq [a, b]$ tiene medida nula entonces f(N) tiene medida nula.
- (b) Concluir que la imagen por f de un conjunto medible es un conjunto medible.