Práctica 5: Sucesiones de funciones

- En cada uno de los casos siguientes, hallar el límite puntual de la sucesión $(f_n)_{n\in\mathbb{N}}$ en el conjunto $S\subseteq\mathbb{R}$:
 - (a) $f_n(x) = x^n$, S = (-1, 1]
 - (b) $f_n(x) = \frac{e^x}{x^n}$, $S = (1, +\infty)$
 - (c) $f_n(x) = n^2 x (1-x)^n$, S = [0,1]
- Demostrar que la sucesión de 1(a) converge uniformemente en $T = (0, \frac{1}{2})$. ¿Es uniforme la convergencia en (-1, 1]?
- Demostrar que la sucesión de 1(b) converge uniformemente en T = [2,5]. ¿Es uniforme la convergencia en (1,2)? ¿Y en $(2,+\infty)$?
- Demostrar que para la sucesión de 1(c) existe $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ pero el mismo no coincide con la integral del límite puntual (es decir, el límite no puede "pasar adentro de la integral").
- Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones sobre todo \mathbb{R} :
 - (a) $f_n(x) = \frac{\sin(nx)}{n}$

 $(c) \ f_n(x) = \frac{n}{n+1} \cdot x$

 $(b) \ f_n(x) = \sin\left(\frac{x}{n}\right)$

- (d) $f_n(x) = \frac{x}{1+x^2} \frac{x^3}{1+nx^2}$
- Sea $S \subseteq \mathbb{R}^m$ y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones de S en \mathbb{R} que converge uniformemente a una función $f: S \to \mathbb{R}$. Supongamos que cada f_n es acotada, es decir que para cada n existe una constante $M_n > 0$ tal que $|f_n(x)| \le M_n$ para todo $x \in S$.
 - (a) Demostrar que f es acotada.
 - (b) Demostrar que $(f_n)_{n\in\mathbb{N}}$ es *uniformemente acotada*, es decir, existe una constante M>0 tal que $|f_n(x)|\leq M$ para todo $x\in S$ y todo $n\in\mathbb{N}$.
- Sea $S \subseteq \mathbb{R}^m$ y sean $(f_n)_{n \in \mathbb{N}}$, $(g_n)_{n \in \mathbb{N}}$ dos sucesiones de funciones de S en \mathbb{R} que convergen uniformemente a funciones $f, g: S \to \mathbb{R}$ respectivamente.
 - (a) Demostrar que $f_n + g_n$ converge uniformemente a f + g.
 - (b) Demostrar que si las f_n y las g_n son acotadas entonces f_ng_n converge uniformemente a fg.
 - (c) Mostrar con un ejemplo que el resultado anterior no es cierto si se permite que las g_n no estén acotadas.
- Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones derivables de (a,b) en \mathbb{R} . Supongamos que f'_n converge uniformemente a 0 en (a,b) y que existe $x_0 \in (a,b)$ tal que $\lim_{n\to\infty} f_n(x_0) = c$. Demostrar que f_n converge uniformemente a c en (a,b).