OPTIMIZACIÓN

Primer Cuatrimestre 2018

Práctica N° 1: Minimización sin restricciones.

Generalidades:

Ejercicio 1 Mostrar ejemplos de las siguientes situaciones:

- (a) $f:[0,1]\to\mathbb{R}$ tal que todos los puntos de [0,1] sean extremos locales de f.
- (b) $\Omega \subset \mathbb{R}^2$ y $f: \Omega \to \mathbb{R}$ tal que f tenga varios minimizadores locales y globales.
- (c) $\Omega \subset \mathbb{R}$ y $f: \Omega \to \mathbb{R}$ continua tal que f no tenga extremos absolutos en Ω .
- (d) $\Omega \subset \mathbb{R}$ compacto y $f:\Omega \to \mathbb{R}$ tal que f no tenga extremos absolutos en Ω .
- (e) $\Omega \subset \mathbb{R}$ compacto y $f:\Omega \to \mathbb{R}$ acotada tal que f no tenga extremos absolutos en Ω

Ejercicio 2 $f: \mathbb{R}^n \to \mathbb{R}$, continua tal que $\lim_{\|x\| \to +\infty} f(x) = +\infty$ entonces f tiene un minimizador global en \mathbb{R}^n .

Ejercicio 3 $f: \mathbb{R}^n \to \mathbb{R}$ continua tal que $\exists x_0 \in \mathbb{R}^n$ de modo que el conjunto de nivel $\{x \in \mathbb{R}^n | f(x) \leq f(x_0)\}$ es acotado, entonces f tiene un minimizador global en \mathbb{R}^n .

Ejercicio 4 Considerar los números reales $a_1 \leq a_2 \leq \cdots \leq a_n$. Resolver los

- 1. Minimizar $\sum_{i=1}^{n} |x a_i|$
- 2. Minimizar Máximo $\{|x a_i|, i = 1, \dots, n\}$
- 3. Minimizar $\sum_{i=1}^{n} |x a_i|^2$
- 4. Maximizar $\prod_{i=1}^{n} |x a_i|$

Ejercicio 5 Encontrar los puntos críticos de

$$f(x) = 2x_1^3 - 3x_1^2 - 6x_1x_2(x_1 - x_2 - 1)$$

¿Cuáles de esos son minimizadores o maximizadores, locales o globales?

Ejercicio 6 Sea $f(x) = (x_1 - x_2^2)(x_1 - \frac{1}{2}x_2^2)$. Verificar que, para x = (0,0), $\lambda = 0$ es un minimizador local de $\phi(\lambda) = f(x + \lambda d)$ para todo $d \in \mathbb{R}^2$, pero x no es un minimizador local de f.

Ejercicio 7 Sea $f(x) = (x_2 - x_1^2)^2 + x_1^5$. Hallar los puntos críticos de f. ¿Cuáles de esos son minimizadores o maximizadores, locales o globales?

Ejercicio 8 Encontrar, si es posible, a y b de manera que $f(x) = x^3 + ax^2 + bx$ tenga un máximo local en x = 0 y un mínimo local en x = 1.

Ejercicio 9 Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x) = x_1^2 + x_2^2 (1 - x_1)^3$$

- 1. Realice un gráfico de la función e identifique un minimizador local.
- 2. ¿Existe un único minimizador local?
- 3. ¿Es este un caso donde existe un único minimizador local estricto, el cual no es global?

Ejercicio 10 Encontrar ejemplos donde:

- (a) x^* es minimizador local de f en Ω , pero $\nabla f(x^*) \neq 0$
- (b) x^* es minimizador local de f en Ω , $\nabla f(x^*) = 0$, pero $\nabla^2 f(x^*)$ no es semidefinida positiva.
- (c) Ω es abierto, $\nabla f(x^*) = 0$ pero x^* no es minimizador local.
- (d) Ω es abierto, $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \ge 0$, pero x^* no es minimizador local.
- (e) Ω es abierto, x^* minimizador local estricto, pero $\nabla^2 f(x^*)$ no sea definida positiva.

Ejercicio 11 Sea
$$f(x, y, z) = 2x^2 + xy + y^2 + yz + z^2 - 6x - 7y - 8z + 9$$
,

- a) Usando las condiciones de primer orden, encuentre un punto mínimo de f.
- b) Verifique que el punto es un mínimo relativo verificando que se cumplen las condiciones de segundo orden.
- c) Pruebe que el punto es un mínimo global.

Ejercicio 12 Sea $f \in C^2(\mathbb{R}^n)$ una función cuadrática, $f(x) = \frac{1}{2}x^TQx - b^Tx + c$. Escribir un algoritmo que verifique si f tiene un mínimo y, en tal caso lo encuentre resolviendo un sistema de ecuaciones apropiado.

Ejercicio 13 Escribir un algoritmo que dada una función $f: \mathbb{R}^n \to \mathbb{R}$, un punto $a \in \mathbb{R}^n$ y un índice $i, 1 \le i \le n$, aproxime $\frac{\partial f}{\partial x_i}(a)$.

Ejercicio 14 Utilizando el programa del ejercicio anterior, escribir programas que calculen $\nabla f(a)$ y Hf(a), para f y a dados.

Ejercicio 15 Escribir un programa que dada una f y un punto inicial x_0 busque un mínimo x^* de f usando el algoritmo de Newton generalizado. Pruébelo para i) el caso del Ejercicio 6 y ii) para la función $f(x,y,z) = -1 - 4x + 6x^2 - 4x^3 + x^4 - 4y + y^2 + 4z + 6z^2 + 4z^3 + z^4$.

Ejercicio 16 Sea $g: \mathbb{R} \to \mathbb{R}$ una función estrictamente creciente y $f: \mathbb{R}^n \to \mathbb{R}$. Probar que minimizar f(x) es equivalente a minimizar g(f(x)).

Funciones Convexas:

Ejercicio 17 Probar que si $f: \mathbb{R}^n \to \mathbb{R}$ es estrictamente convexa y tiene mínimo, entonces el mínimo es único. Dar un ejemplo de función estrictamente convexa sin mínimo.

Ejercicio 18 $f: \mathbb{R}^n \to \mathbb{R}$ estrictamente convexa con un único mínimo x^* . Probar que $f(x) \to \infty$ cuando $||x|| \to \infty$.

Ejercicio 19 Sea $\{f_i\}_{i\in I}$ un conjunto de funciones convexas definidas sobre un conjunto convexo Ω . Muestre que la función $f(x) = \sup_{i\in I} f_i(x)$ es convexa en la región en la cual es finita.

Ejercicio 20 Sea γ un función monótona no decreciente de una variable, es decir r' > r implica $\gamma(r') \ge \gamma(r)$, que además es convexa y sea f una función convexa definida en un conjunto convexo. Muestre que la función $\gamma(f)$ definida como $\gamma(f)(x) = \gamma(f(x))$ es convexa sobre Ω .

Ejercicio 21 Sea $f \in C^2(\Omega)$, $\Omega \subset \mathbb{R}^n$. Muestre que una condición necesaria y suficiente para que un punto x^* en el interior de Ω sea un mínimo relativo de f es que $\nabla f(x^*) = 0$ y que f sea localmente convexa en x^* .