Matemática 2 - Primer Cuatrimestre 2018

Práctica 7 - Matrices simétricas, hermitianas, ortogonales y unitarias. Diagonalización.

Ejercicio 1. Encontrar una tercera columna para que la matriz $U \in \mathbb{R}^{3 \times 3}$ sea ortogonal siendo

$$U = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & * \\ \frac{1}{\sqrt{3}} & 0 & * \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & * \end{pmatrix}.$$

¿Cuántas soluciones hay? Interpretar geométricamente. ¿Es posible conseguir que $\det(U) = -1$?

Ejercicio 2. Encontrar una tercera fila para que la matriz $U \in \mathbb{C}^{3\times 3}$ sea unitaria siendo

$$U = \begin{pmatrix} \frac{3i}{5} & \frac{4}{5} & 0\\ 0 & 0 & i\\ * & * & * \end{pmatrix}.$$

Ejercicio 3. Para todos los casos de los ejercicios 1 y 2 de la práctica 5, donde la matriz $A \in \mathbb{R}^{n \times n}$ a diagonalizar es simétrica, determinar una matriz ortogonal U tal que U^tAU es diagonal.

Ejercicio 4. Encontrar una matriz $U \in \mathbb{C}^{3\times 3}$ unitaria tal que $\overline{U^t}AU$ sea diagonal para la matriz hermitiana A siguiente:

$$\left(\begin{array}{ccc} 3 & 2i & 1\\ -2i & 3 & i\\ 1 & -i & 2 \end{array}\right).$$

Ejercicio 5. Hallar la matriz en la base canónica de las siguientes transformaciones ortogonales:

- a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, rotación de ángulo $\frac{\pi}{3}$.
- b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, simetría respecto de la recta de ecuación $x_1 x_2 = 0$.

Ejercicio 6. Determinar y clasificar todas las transformaciones ortogonales $f: \mathbb{R}^2 \to \mathbb{R}^2$ tales que f(3,4) = (5,0).

Ejercicio 7. Hallar la matriz en la base canónica de las siguientes transformaciones ortogonales:

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$, simetría respecto del plano de ecuación $x_1 + x_2 x_3 = 0$.
- b) $f: \mathbb{R}^3 \to \mathbb{R}^3$, rotación de ángulo $\frac{\pi}{4}$ y eje $\langle (1,0,1) \rangle$.

Ejercicio 8. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ una rotación de eje $\langle (2, -2, -1) \rangle$ y ángulo $\pi/2$. Hallar f(4, -1, 1).

Ejercicio 9. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}.$$

Decidir si f es una rotación, una simetría o una composición de una rotación y una simetría. Encontrar la rotación, la simetría o ambas.

Ejercicio 10. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{7}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}.$$

- a) Probar que f es una rotación.
- b) Hallar una transformación lineal $g: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $g \circ g = f$.

Ejercicio 11. Hallar una rotación $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(\sqrt{2}/2, 1, -\sqrt{2}/2) = (0, \sqrt{2}, 0)$.

Ejercicio 12. Hallar una simetría $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(2, -1, 2) = (0, 3, 0).