Análisis Complejo- - Primer Cuatrimestre de 2018

Práctica N°5. Funciones Analíticas

Funciones Analíticas

1. i) Consideramos la función de Cauchy $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} exp(-1/x^2) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Probar que es C^{∞} . ¿Puede expresarse en algún entorno de x=0 mediante una serie de potencias?

- ii) Si definimos ahora otra función $f: \mathbb{C} \to \mathbb{C}$ de la variable compleja z cambiando x por z en la fórmula de i) ¿se obtiene una función holomorfa en z = 0?
- 2. Sea f entera y R un número real positivo tal que $|f(z)| \leq M|z|^n$ para todo z tal que |z| > R. Probar que f es un polinomio de grado menor o igual que n.
- 3. Hallar todas las funciones enteras tales que $\lim_{|z|\to\infty} |f(z)| = 5$.
- 4. Sea $u: \mathbb{R}^2 \to \mathbb{R}$ armónica no survectiva.
 - (a) Probar que u está acotada superior o inferiormente.
 - (b) Probar que u es constante (por lo tanto, toda función armónica es constante o survectiva).
- 5. Sea f entera tal que existen dos números complejos, z_0 y z_1 , \mathbb{R} -linealmente independientes, tales que $f(z+z_0)=f(z)$ y $f(z+z_1)=f(z)$ para todo $z\in\mathbb{C}$. Probar que f es constante.
- 6. (a) Sea $f: \Omega \to \mathbb{C}$ holomorfa, $f \not\equiv 0$. Probar que para cada $a \in \Omega$ tal que f(a) = 0 existen $n \in \mathbb{N}$ y $g: \Omega \to \mathbb{C}$ holomorfa con $g(a) \not\equiv 0$ tales que $f(z) = (z-a)^n g(z)$ para todo $z \in \Omega$.
 - (b) Con las hipótesis del ítem anterior, verificar que el conjunto de ceros de f es discreto. Deducir que en todo compacto de Ω , f tiene sólo un número finito de ceros.
- 7. (a) ¿Existe f holomorfa en B(0,1) tal que $f(\frac{1}{2n}) = f(\frac{1}{2n+1}) = \frac{1}{n}$ para todo $n \in \mathbb{N}$?
 - (b) ¿Existe f holomorfa en B(0,1) tal que $f(\frac{1}{n}) = \frac{1}{3-2n}$ para todo $n \in \mathbb{N}, n > 1$?
- 8. Hallar todas las funciones enteras tales que para todo $n \in \mathbb{N}$,

$$n^2 f\left(\frac{1}{n}\right)^3 + f\left(\frac{1}{n}\right) = 0.$$

9. Sea $\Omega \subset \mathbb{C}$ abierto conexo simétrico con respecto a \mathbb{R} tal que $\Omega \cap \mathbb{R} \neq \emptyset$ y sea $f: \Omega \to \mathbb{C}$ tal que para todo $z \in \Omega \cap \mathbb{R}$ vale que $f(z) \in \mathbb{R}$. Probar que para todo $z \in \Omega$ vale que

$$f(\overline{z}) = \overline{f(z)}.$$

- 10. Sea $f: B(0,1) \to \mathbb{C}$, $f(z) = \cos\left(\frac{1+z}{1-z}\right)$. Verificar que los ceros de f son los puntos de la forma $z_n = \frac{n\pi-2}{n\pi+2}$ con n impar, que f es holomorfa en B(0,1) y que los ceros de f tienen un punto de acumulación. ¿Es $f \equiv 0$ en B(0,1)? ¿Contradice esto algún resultado conocido?
- 11. Sean Ω un abierto conexo del plano complejo y $f,g:\Omega\to\mathbb{C}$ dos funciones holomorfas que no se anulan en Ω . Si existe una sucesión $(a_n)_{n\geq 1}$ de puntos de Ω tales que $\lim_{n\to\infty}a_n=a\in\Omega,\ a_n\neq a$ para todo $n\in\mathbb{N}$ y además

$$\frac{f'(a_n)}{f(a_n)} = \frac{g'(a_n)}{g(a_n)} \text{ para todo } n \in \mathbb{N},$$

probar que existe una constante c tal que f(z) = cg(z) en Ω .

- 12. Demostrar que si Ω es un abierto conexo del plano complejo, f y g son holomorfas en Ω y $\overline{f}g$ es holomorfa en Ω , entonces $g \equiv 0$ o f es constante.
- 13. Sea Ω un abierto acotado y conexo y consideremos n puntos P_1, P_2, \ldots, P_n en el plano \mathbb{R}^2 . Probar que el producto $\overline{PP_1} \cdot \ldots \cdot \overline{PP_n}$ de las distancias de un punto P en $\overline{\Omega}$ a los puntos P_1, \ldots, P_n alcanza su máximo en un punto de la frontera de Ω .
- 14. Sea f entera tal que $f(0)=\frac{1}{2}$ y $|f(z)|\leq |e^z-\frac{1}{2}|$ para todo z en $\mathbb C$. Probar que $f(z)=e^z-\frac{1}{2}$ para todo z en $\mathbb C$.
- 15. Sean C un un cuadrado en \mathbb{C} y f una función continua en C y holomorfa en el interior de C. Probar que si f se anula en uno de los lados de C, entonces f es constante.
- 16. Sean $\Omega \subset \mathbb{C}$ conexo con $\overline{\Omega}$ compacto y $f: \overline{\Omega} \to \mathbb{C}$ continua, holomorfa en Ω y no constante tal que |f(z)| = cte para todo $z \in \partial \overline{\Omega}$. Probar que existe $z \in \Omega$ tal que f(z) = 0.
- 17. Formular y demostrar el "principio de módulo mínimo" para funciones holomorfas.
- 18. Sea $f: B(0,1) \to B(0,1)$ holomorfa. Probar que si existen dos números complejos distintos a y b tales que f(a) = a y f(b) = b, entonces f(z) = z para todo z en B(0,1). (Sugerencia: considerar la función

$$g(z) = \frac{h(z) - a}{1 - \overline{a}h(z)}, \quad \text{con} \quad h(z) = f\left(\frac{z + a}{1 + \overline{a}z}\right)$$

y usar el Lema de Schwarz.)

- 19. Sean $f, g: B(0,1) \to B(0,1)$ holomorfas y biyectivas. Probar que si f y g coinciden en dos puntos distintos de B(0,1), entonces f(z) = g(z) para todo z en B(0,1).
- 20. Hallar todas las funciones holomorfas $f: B(0,1) \to B(1,4)$ que verifican simultáneamente f(0) = 3 y $f(\frac{1}{2}) = 1$.
- 21. Sea $f: B(0,1) \to B(0,1)$ holomorfa tal que f(0) = 0 y |f'(0)| = 1. Probar que existe $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ tal que $f(z) = \lambda z$ para todo z en B(0,1).
- 22. Hallar todas las funciones holomorfas $f: B(0,1) \to B(0,2)$ que verifican simultáneamente f(0) = 1 y $f'(0) = \frac{3}{2}$.