Práctica 8

A será un dominio de Dedekind.

- 1. Sea $I \subseteq A$ un ideal.
 - (a) Sea P un ideal primo que aparece con altura $n \ge 0$ en la factorización de I. Probar que $I \subseteq P^n$, pero $I \not\subseteq P^{n+1}$.
 - (b) Sea J otro ideal. Probar que $I \subseteq J$ si y sólo si J divide a I (esto quiere decir que existe un tercer ideal K tal que $I = J \cdot K$).
- 2. Sean P,Q dos ideales primos distintos. Probar que $P \cdot Q = P \cap Q$.
- 3. Sean $I = P_1^{n_1} \cdots P_k^{n_k}$, $J = P_1^{m_1} \cdots P_k^{m_k}$ las factorizaciones de dos ideales de A (con $n_j, m_j \ge 0$). Probar que,

$$I + J = P_1^{\min\{n_1, m_1\}} \cdots P_k^{\min\{n_k, m_k\}},$$

$$I \cap J = P_1^{\max\{n_1, m_1\}} \cdots P_k^{\max\{n_k, m_k\}}.$$

Concluir que $I \cdot J = (I+J) \cdot (I \cap J)$ y que I, J son comaximales si y sólo si no tienen factores primos en común.

4. Probar que en el anillo $\mathbb{Z}[\sqrt{-5}]$, la factorización en producto de primos del ideal <3> es:

$$\langle 3 \rangle = \langle 3, 1 + \sqrt{-5} \rangle \cdot \langle 3, 1 - \sqrt{-5} \rangle.$$

- 5. (a) Sea I un ideal fraccionario de A, probar que el inverso de I es $J = \{x \in K \mid xI \subseteq A\}$, donde K es el cuerpo de fracciones de A.
 - (b) Para $A = \mathbb{Z}[i]$, calcular el inverso de I = <1+i>.
 - (c) Para $A = \mathbb{Z}[\sqrt{-5}]$, calcular el inverso de $I = <3, 1+2\sqrt{-5}>$.
- 6. Sea $I=P_1^{n_1}\cdots P_k^{n_k}$ la factorización de un ideal. Probar que,

$$A/I \simeq A/P_1^{n_1} \times \cdots \times A/P_k^{n_k},$$

como anillos.