Práctica 3: La topología de los espacios euclídeos

- 1. Decida si los siguientes conjuntos son abiertos, cerrados, o acotados:
 - a) \mathbb{N} ;
 - $b) \mathbb{Q};$
 - $c) \{x \in \mathbb{R} : x > 0\};$
 - $d) \mathbb{R} \setminus \mathbb{Q};$
 - e) (0,1];
 - $f) \left\{ 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} : n \in \mathbb{N} \right\};$
 - $g) \{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} : n \in \mathbb{N}\}.$
- 2. Sean S y T subconjuntos de \mathbb{R} . Pruebe las siguientes afirmaciones.
 - a) Si $S\subseteq T$ entonces $S^\circ\subseteq T$ °. ¿Vale la recíproca? ¿Es cierto que si $S^\circ=T^\circ$ entonces $S\subset T$?
 - b) $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$. ¿Qué ocurre con el interior de la intersección de una familia finita de conjuntos? ¿y si la familia es infinita?
 - c) $(S \cup T)^{\circ} \supseteq S^{\circ} \cup T^{\circ}$. En qué casos vale la igualdad?
 - d) $\overline{S \cup T} = \overline{S} \cup \overline{T}$. ¿Se puede generalizar esta igualdad a una unión infinita?
 - e) $\overline{S \cap T} \subseteq \overline{S} \cap \overline{T}$. ¿Vale la igualdad?
 - f) $(\mathbb{R} \setminus S)^{\circ} = \mathbb{R} \setminus \overline{S}$. ¿Es cierta la igualdad que se obtiene intercambiando interior y clausura?
- 3. Encuentre el interior, la clausura y la frontera de cada conjunto:
 - a) [0,1];
 - $b) \mathbb{Q} \cap [0,1];$
 - $c) [-1,0) \cup \{1\};$
 - $d) \ \left\{ \frac{1}{n} : n \in \mathbb{N} \right\};$
 - $e) \left\{ \frac{(-1)^n n}{1+n} : n \in \mathbb{N} \right\};$
 - $f) \mathbb{Z}.$
- 4. Sea $S \subseteq \mathbb{R}$. Probar las siguientes afirmaciones.
 - a) S es abierto si y solo si es disjunto con ∂S .
 - b) S es cerrado si y solo si $\partial S \subset S$.
 - c) S es cerrado si y solo si $S = S^{\circ} \cup \partial S$.

- $d) \ \partial S = \overline{S} \cap \overline{\mathbb{R} \setminus S}.$
- 5. Sea $S \subseteq \mathbb{R}$. Decimos que $p \in \mathbb{R}$ es un punto de acumulación de S si $p \in \overline{S \setminus p}$. Notamos por S' al conjunto de todos los puntos de acumulación de S.
 - a) Determine S' para cada uno de los conjuntos del Ejercicio 3.
 - b) Un punto $p \in S$ es un punto aislado de S si existe $\varepsilon > 0$ tal que $(p-\varepsilon, p+\varepsilon) \cap S = \{p\}$. Muestre que $\overline{S} = S' \cup \{\text{puntos aislados de } S\}$.
- 6. * Encuentre los puntos de acumulación y la clausura del conjunto $\{\frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{N}\}.$
- 7. Determine todos los subconjuntos no vacíos de \mathbb{R} que son a la vez abiertos y cerrados.
- 8. Decida si los siguientes conjuntos son abiertos, cerrados, o acotados.
 - a) $\{(x,y) \in \mathbb{R}^2 : x > 1\}.$
 - b) $\{(x,y) \in \mathbb{R}^2 : x > y\}.$
 - c) $\{(x,y) \in \mathbb{R}^2 : y > 0\}.$
 - d) $\{(x,y) \in \mathbb{R}^2 : x = y\}.$
- 9. ¿Siguen siendo ciertas las afirmaciones del Ejercicio 2 si S y T son subconjuntos de \mathbb{R}^2 ?
- 10. Encuentre los puntos de acumulación y la clausura del conjunto

$$S = \{ (\frac{1}{n}, \frac{1}{m}) \in \mathbb{R}^2 : n, m \in \mathbb{N} \}.$$

- 11. Para cada $n \in \mathbb{N}$ con $n \geq 2$ definimos $I_n = (\frac{1}{n}, \frac{2}{n}) \subseteq \mathbb{R}$. Muestre que $(0, 1) = \bigcup_{n \geq 2} I_n$. ¿Existe un conjunto finito $\mathcal{F} \subset \mathbb{N}_{\geq 2}$ tal que $(0, 1) = \bigcup_{n \in \mathcal{F}} I_n$? ¿Es compacto el conjunto (0, 1)?
- 12. Si $U_n := \{(x,y) \in \mathbb{R}^2 / ||(x,y) (0,n)|| < n\}$ para cada $n \ge 1$, muestre que $\bigcup_{n \in \mathbb{N}} U_n$ es el semiplano superior abierto.
- 13. Decida cuáles de los siguientes conjuntos son compactos:
 - $a) \mathbb{Q};$
 - $b) \mathbb{Q} \cap [0,1];$
 - $c) \mathbb{R};$
 - $d) [0,1] \cup [100,1000];$
 - $e) \left\{ \frac{1}{n} : n \in \mathbb{N} \right\};$
 - $f) \{ \sqrt[n]{n} : n \in \mathbb{N} \}.$
- 14. Probar que si K es un subconjunto compacto de \mathbb{R} entonces tiene mínimo y máximo.
- 15. * Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión acotada y sea P el conjunto de sus puntos límite. Probar que P es compacto, que su mínimo es líminf x_n y su máximo es lím sup x_n .

- 16. Sean $S, T \subseteq \mathbb{R}$ dos conjuntos compactos. Probar que $S \cup T$ y $S \cap T$ son compactos. ¿Qué ocurre si se toman uniones o intersecciones infinitas?
- 17. Probar que un conjunto $S \subseteq \mathbb{R}$ es compacto si y sólo si toda sucesión contenida en S contiene una subsucesión que converge a un punto de S.
- 18. Probar que si K es compacto y F es cerrado, entonces $K \cap F$ es compacto.
- 19. * Probar que si $K \subseteq \mathbb{R}$ es compacto, entonces los conjuntos $S = \{x + y : x, y \in K\}$ y $P = \{xy : x, y \in K\}$ son compactos.
- 20. Una norma sobre \mathbb{R}^n es una función $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ tal que:
 - $||x|| \ge 0$ para todo $x \in \mathbb{R}^n$ y ||x|| = 0 si y solamente si x = 0;
 - $\|\lambda x\| = |\lambda| \|x\|$ para todo $x \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$;
 - $||x + y|| \le ||x|| + ||y||$ para todo $x, y \in \mathbb{R}^n$.
 - a) Muestre que las funciones $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_\infty : \mathbb{R}^n \to \mathbb{R}$ dadas por

$$\begin{split} \|x\|_1 &= \sum_{i=1}^n |x_i| \,, \\ \|x\|_2 &= \sqrt{\sum_{i=1}^n x_i^2}, \\ \|x\|_\infty &= \max\{|x_i| : 1 \le i \le n\} \end{split}$$

para cada $x = (x_1, ..., x_n) \in \mathbb{R}^n$ son normas. Si $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ es una norma, para cada $x \in \mathbb{R}^n$ y cada $\varepsilon > 0$ llamamos bola centrada en x de radio ε al conjunto

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^n : ||x - y|| < \varepsilon \}.$$

b) Muestre que existen constantes positivas c, c', d, d' tales que

$$c||x||_1 \le ||x||_2 \le c'||x||_1,$$
 $d||x||_{\infty} \le ||x||_2 \le d'||x||_{\infty}$

para todo $x \in \mathbb{R}^n$.

Sugerencia: Primero resuelva el problema en el caso n=2. Dibuje las bolas de radio 1 centradas en cero para las tres normas.

- c) Decimos que un conjunto $A \subseteq \mathbb{R}^n$ es abierto con respecto a $\|\cdot\|$ si para todo $x \in A$ existe $\varepsilon > 0$ tal que $B_{\varepsilon}(x) \subseteq A$. Muestre que un conjunto es abierto con respecto a $\|\cdot\|_1$ si y solo si es abierto con respecto a $\|\cdot\|_2$, si y solo si es abierto con respecto a $\|\cdot\|_2$.
- d) Si $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ es una norma, decimos que una sucesión $(x_k)_{k\geq 1}$ en \mathbb{R}^n converge a $x\in\mathbb{R}^n$ con respecto a $\|\cdot\|$ si

$$\lim_{k \to \infty} ||x_k - x|| = 0.$$

Muestre que una sucesión $(x_k)_{k\geq 1}$ converge a $x\in \mathbb{R}^n$ con respecto a la norma $\|\cdot\|_1$ si y solo si lo hace con respecto a la norma $\|\cdot\|_2$, si y solo si lo hace con respecto a la norma $\|\cdot\|_{\infty}$.